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Abstract

This study examines the spinup dynamics of dual-spin spacecraft having an

imbalanced rotor. Of particular interest is a phenomenon called "resonance capture"

during which the spinup motor torque induces uncontrolled growth of nutation. A

captured spacecraft tumbles end-over-end, while an escaped spacecraft experiences

little nutation growth. The conditions which lead to both states are analyzed. A set

of criteria based on the spacecraft's kinetic energy at the end of spinup is used to

determine whether or not it has been captured. To calculate the final energies against

which these criteria are compared, a set of nondimensional equations of motion are

numerically integrated. Using computer simulations, the magnitude of the motor

torque is shown to affect the probability of capture. For prolate spinup, larger

torques are desirable, whereas for oblate spinup, smaller torques are preferred. This

probability is also influenced by the initial spin configuration and is determined here

as a function of the initial energies. For a given motor torque, some initial energies

lead to guaranteed capture and others to guaranteed escape. This information is

combined to form a "map" which allows designers to find the best initial spinup

conditions for a given spacecraft.
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RESONANCE CAPTURE IN UNBALANCED DUAL-SPIN

SPACECRAFT

L Introduction

1.1 Dual-Spin Stabilization

The orientation of artificial satellites is one of the most crucial factors in the

successful performance of their mission. They are often required to maintain a fixed

attitude relative to inertial space. One of the earliest methods developed for fixing

satellite orientation is spin stabilization. Because the environmental torques acting

on the spinning spacecraft are small, its angular momentum will remain essentially

unchanged over an extended period of time. By ensuring that the proper spin axis

is aligned parallel to the spacecraft's angular momentum vector, the satellite will

not deviate appreciably from this attitude, even in the presence of small external

torques.

Spacecraft attitude dynamics became an important subject immediately after

the launch of the United States' first satellite, Explorer I. The designers of this prolate

(rod-like) spacecraft understood from the classical work of Poinsot that stabilization

of the satellite in inertial space would be achieved by spinning it about either its

major or minor axis of inertia. Stability in this case refers to directional stability: if,

in the presence of small disturbances, the direction of the body-fixed axis aligned with

the spacecraft angular momentum vector undergoes an arbitrarily small deviation,

its spin is directionally stable (11:121). Unbeknownst to these engineers, however,

the presence of energy dissipation plays an important role in the stability of the spin

configuration. Dissipative characteristics are inherent in all spacecraft, taking the

form of extremely nonlinear processes such as material deformation, antenna whip,



and fuel slosh. Under their influence, the rotational kinetic energy of the spacecraft

is gradually lost as heat. In short, Poinsot's results only apply to an ideal, perfectly

rigid rotating body. Since that time, it has become a well-known fact that stability

of a single rotating dissipative body can only occur about its major inertia axis

because this corresponds to the state of minimum rotational kinetic energy. Because

Ezplorer I was prolate, it violated this major-azis rule and was thereby forced to

conform to it. The spacecraft's major axis aligned itself along the direction of its

angular momentum causing it to tumble in a flat-spin.

From this experience, later spin-stabilized spacecraft were purposefully de-

signed as squat cylinders so that axial rotation would correspond to spin about the

major inertia axis. This type of geometry is described as disc-like, or oblate. Al-

though stability is ensured with the oblate spacecraft, its geometry severely affects

the design of the launch vehicle used to deliver it into orbit. The girth of the pay-

load shroud which encloses the satellite must be greater than that of the rest of the

rocket. This leads to complications such as increased drag.

Another problem arising from the spin-stabilized spacecraft is the intermittent

coverage afforded to specific "fixed" objects in space due to its incessant rotation.

Early communications satellites could not remain focused on the Earth, so they were

required to carry omnidirectional antennas. These antennas are unable to transmit or

receive signals as well as directional ones, which are aimed at a particular location.

For the same reason, spin stabilized satellites are not ideal for carrying scientific

payloads intended to observe the sun, stars, or other fixed celestial objects. This

directional issue was resolved with the development of the gyrostat or dual-spin

satellite. These terms apply to spacecraft which have an inertially-fixed or slowly

rotating platform in conjunction with a rotor that spins to provide attitude stability.

All directional-dependent equipment are mounted on the non-spinning or slowly-

spinning platform. Gyrostats come in two basic forms characterized by the relative

placement of the platform and rotor. One form is designed with the rotor mounted

2



inside the platform, while the other has it attached externally. The first of these is

called a bias momentum satellite, and the second is simply recognized as a gyrostat.

This thesis focuses on the dynamics of the latter. The first "dual-spinner" was Ball

Brothers' Orbiting Solar Observatory (OSO-1), which carried instrumentation on a

stationary platform that continuously faced the sun (16).

A gyrostat is usually deployed in an "all-spun" condition in which the platform

and rotor are locked so that the satellite spins as a single rigid body. The maneuver

during which it enters its dual-spin state is known as spinup or despin, the former

referring to the motor's effect on the rotor and the latter to its effect on the plat-

form. Since both terms describe the same maneuver, they are used interchangeably

throughout this study. During spinup, a motor induces relative spin between the

platform and rotor. If the process is successful, the platform will be despun so that

most or all of the spacecraft's angular momentum is stored in the spinning rotor.

In the 1960s, Tony Iorillo, an engineer working for the Hughes Aircraft Com-

pany, and Vernon Landon, an engineer at RCA, independently discovered another

advantage of the dual-spin configuration (16, 10:3). They found that this type of

spacecraft can violate the major-axis rule. The implications were significant: it was

no longer necessary to build oblate satellites. From the major-axis rule, as given in

(11:445), it is clear that oblate dual-spinners always satisfy the condition for sta-

bility. With a little more insight, it can be seen that prolate spacecraft may do

so as well. For this to be true, the stable damping of the platform must overcome

the unstable damping of the rotor. In this context, "damping" refers to the rate of

energy dissipation in each body. This revolutionary concept was later validated in

1969 with the successful launch of the first prolate dual-spin satellite, TACSAT L.

Today, most commercial communications satellites are dual-spinners (10:4).

Energy dissipation is not the only factor which causes a gyrostat to tumble.

Even a hypothetically rigid spacecraft in an ideal torque-free environment will do so

under certain conditions which are inherent to the spacecraft itself. If this occurs
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during the spinup maneuver, the gyrostat is said to undergo resonance capture. This

can occur in oblate as well as prolate spacecraft.

1.2 Problem Statement

An unbalanced gyrostat has an axisymmetric, unbalanced rotor coupled to

an axisymmetric, balanced platform. Our goal is to study resonance capture for

this particular geometry using the energy technique developed by Hall (6). The

probability of capture is determined from these results and is used to construct a

tool which enables the spacecraft designer to find ideal initial spinup conditions.

1.3 Literature Review

1.3.1 Earlier Analyses. The dynamics of the -vrostat have been studied

extensively in the past. The classical model has a balanced axisymmetric rotor

coupled to a platform that may be neither balanced nor axisymmetric. Because

there are two bodies involved, we sometimes refer to this as a system. Both bodies

are rigid so that energy dissipation is negligible, as are all external torques which

may affect the dynamics. They are connected by a rigid shaft about which relative

spin may occur, driven by either a constant-velocity or constant-torque motor. The

shaft is aligned along the rotor's axis of symmetry so that the moment of inertia

tensor of the system is constant. This greatly simplifies the analysis. With these

assumptions, the governing equations become relatively straightforward. A solution

to these equations has already been determined for the unperturbed axial gyrostat.

In this context, "unperturbed" refers to the condition in which no torque exists

between the platform and rotor, and "axial" describes a gyrostat whose platform is

balanced. In this special case, the equations of motion are integrable making possible

a closed-form analytical solution.

One of the earliest solutions to the axial gyrostat problem was found by Ma-

saitis in 1961 (17). His model consists of an axisymmetric and an asymmetric body
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free to rotate about a frictionless shaft which coincides with one of the principal di-

rections of the system. The governing equations, based on those of Euler, are written

in terms of the system angular velocities. Masaitis derived these for the platform

and rotor independently, thereby arriving at six coupled expressions. He then re-

duced their number from six to four by making use of the system constraints. Three

of these are coupled, nonlinear ordinary differential equations, while the fourth is a

simple first order differential equation which can be solved independently of the oth-

ers. Masaitis was able to rearrange the three coupled equations into two integrable

forms. He achieved this by obtaining quadratic expressions for two of the three an-

gular velocity components in terms of the third, thereby decoupling the equations.

He then solved these equations in terms of elliptic functions.

Other dynamicists have continued to build upon Masaitis's work. Cochran et

al. (3), for example, were able to develop governing equations in terms of angular

momentum rather than angular velocity - another variation of Euler's equations.

Following a procedure similar to Masaitis, they were not only able to express the

angular momenta in terms of elliptic functions, but they also found such expressions

for the Euler angles as well.

Hall (5, 8) also derived Euler's equations in terms of angular momentum, but

he did so in dimensionless form so that his equations appear much simpler than those

of his predecessors. He then found the analytical solutions to these equations which

determine the unperturbed motion of the axial gyrostat, again based on the classical

elliptic functions. When the motion is slightly perturbed, Hall noted that the equa-

tions of motion are no longer integrable. By using the method of averaging, he was

able to find approzimate solutions to the perturbed motion relevant to spinup. He

also developed a very convenient means by which spinup dynamics can be observed

by looking at the change of system kinetic energy versus the rotor's inertial angular

momentum. Hall later extended this method to the biaxial gyrostat (7), but he did

not show how to obtain an analytical solution to this particular system.
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Kinsey et al. (13, 14) also examined the dynamics of spinup, but they used

a different spacecraft geometry. Their model consists of a balanced axisymmetric

platform connected to an unbalanced axisymmetric rotor. The difference between

their model and the classical gyrostat exists only in nomenclature, however, because

they merely reversed the roles of the platform and rotor (5:70). Hence, their analysis

is based on despinning the platform rather than spinning up the rotor. Kinsey's gov-

erning equations, like those of Masaitis, are developed for both bodies independently

relative to inertial space and are written in terms of angular velocity. Their solution

is approximated via a "near-identity transformation." This is a form of the method

of averaging.

Wittenburg's (22) analysis is not limited to the axial gyrostat. He developed

solution techniques for three different cases. These are based on different rotor axis

orientations. Case I assumes the rotor is parallel to one of the principal axes of the

gyrostat. Case II is slightly more general; the rotor axis no longer coincides with any

particular principal direction, but it is constrained to lie within a principal plane.

Finally, in Case III, the rotor is arbitrarily oriented. The first of these corresponds to

the axial gyrostat. As noted above, these solutions have been well-documented. The

second case is analogous to Kinsey's problem and is the model that we are currently

examining. Case III is beyond the scope of this thesis.

1.3.2 Spinup Problems: Trap States. Scher and Farrenkopf (20) have

identified two "trap states" which may occur during spinup. These are conditions in

which the final spin configuration of the spacecraft has deviated significantly from

the intended dual-spin state. The minimum energy trap occurs after the maneuver

is completed. Viscous damping in the bearing causes the relative spin between the

rotor and platform to diminish. Over an extended period of time, it eventually ceases

so that the spacecraft becomes a single spinning body. During this process, energy

is dissipated. As a consequence of the major-axis rule, prolate spacecraft will enter
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a flat-spin. Scher and Farrenkopf have shown that recovery from this condition is

possible by pulsing the spinup motor at one of the natural frequencies of the system.

The second trap state they identified is the resonance trap, denoted by Kin-

sey as precession phase lock and referred to in this study as resonance capture, or

simply capture. This may occur as spinup proceeds. In our analysis, a dual-spin

satellite which avoids this trap is said to have escaped. To be a candidate for reso-

nance capture, a gyrostat which has a balanced, axisymmetric platform must have

a rotor that possesses one of the following three geometric properties: asymmetric

and balanced, axisymmetric and unbalanced, or asymmetric and unbalanced (6).

A spacecraft experiencing resonance capture undergoes a large growth in nutation.

This phenomenon has been studied by Kinsey et al. for the case pertaining to the

axisymmetric and unbalanced rotor. Their conclusions are based on the size of the

nutation angle and the magnitude of the inertial angular velocities of both the plat-

form and rotor at the conclusion of spinup. They observe that resonance capture will

result for a system having an inadequate spinup motor torque (one that is too small)

when the inertial angular velocity of the unbalanced rotor approaches the inertial

free precession rate of the spacecraft. Kinsey's analysis is discussed in greater detail

in Chapter 5.

Hall, on the other hand, examined resonance capture for gyrostats having an

asymmetric and balanced rotor in (6) and gave a partial treatment of this phe-

nomenon for the asymmetric, unbalanced rotor case in (7). In (6), he established a

set of criteria for capture in terms of the system energy. He showed that nutation

growth begins when trajectories of the perturbed system cross the instantaneous

separatrices of the unperturbed system and is actually independent of the inertial

free precession rate.

An intriguing technique based on adiabatic invariant theory was developed by

Henrard in 1980 (9) to estimate the probability of capture. Henrard's equations of

motion are expressed as a generalized Hamiltonian function analogous to the simple
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pendulum. His method allows one to determine the likelihood that capture will occur

for a simple harmonic oscillator given a particular set of initial conditions.

1.4 Outline of the Thesis

Our analysis begins in Chapter 2 with the development of the system model

and the governing equations. This is done in two different reference frames to illus-

trate the effect that the coordinate system has on the complexity of the equations.

Appendix A illustrates the means with which to convert from one frame to the

other. These equations are then nondimensionalized to simplify the analysis. Using

these dimensionless parameters, some important first integral relations are developed

which play an important role in the analysis of spinup.

In Chapter 3 an attempt is made to find the exact solution of the unperturbed

system of equations. Using a variation of Wittenburg's technique, it is shown that

an analytical solution exists, but that it is extremely difficult to express. As a result,

the only practical ways to solve the spinup problem are to find approximate solutions

or to numerically integrate the equations of motion. We choose the latter method.

The fourth chapter shows two graphical techniques to analyze spinup. One

method is to generate a series of momentum spheres, and the other is to observe

how the rotational kinetic energy varies with the inertial angular momentum of the

balanced body over time. The latter method was originally developed in (5) for the

axial gyrostat and is adapted here for this new geometry.

In Chapter 5, Kinsey's model is reexamined using the techniques developed in

this thesis. With the procedure outlined in Appendix B, his dimensionless parame-

ters are translated into our own. From the analysis of Kinsey's model it becomes clear

that the definitions held by Kinsey and Hall for resonance capture are incompatible.

As a result, more precise definitions for both views are offered.

The probability of capture for different initial conditions is defined in Chapter

5 as well. These conditions include, but are not limited to, the all-spun state, whose

8



expression is derived in Appendix C. This probability forms the basis of an innovative

method for which spacecraft designers can choose the best initial spinup conditions.

Finally, in Chapter 6 the procedure and results are briefly summarized, and

recommendations are made for possible continuing research on the subject. The

MATLAB code used throughout the analysis is provided in Appendix D.
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II. The Equations of Motion

The gyrostat's behavior is governed by its equations of motion. Throughout

the literature it is clear that these may take numerous forms. Their complexity

depends on the assumptions made while modelling the system, the reference frame

in which they are expressed, and the way in which the parameters are defined.

The assumptions are an integral part of the analysis. They are used to turn an

otherwise intractable problem, wrought with extensive nonlinearities and random

happenstances, into one which can be examined with relative ease. But simplifying

assumptions alone do not ensure minimum complexity. Proper selection of the ref-

erence frame allows us to bypass certain terms in our expressions, and well-defined

dimensionless parameters can compact large groups of terms into smaller ones. All

of these concepts are used in this chapter to construct the governing equations for

the unbalanced spacecraft.

2.1 Modelling the System

2.1.1 Assumptions. The spacecraft is modelled after Kinsey's gyrostat

(14, 13:20), as shown in Figure 1. It consists of two bodies, a platform (1') and

rotor (R?), capable of relative spin about an axis which joins them. The platform

is axisymmetric, and the relative spin axis is aligned with its axis of symmetry.

For this reason it is dynamically balanced. The rotor is also axisymmetric, but

unlike the platform, it is unbalanced. This particular geometry is defined here as

an unbalanced gyrostat. During spinup, the motor torque is constant and bearing

friction is negligible. Also, the entire spacecraft is considered to be perfectly rigid.

As a result, energy dissipation is ignored. Finally, the spacecraft is assumed to rotate

in a torque-free environment.

In the classical gyrostat, the platform and rotor designations are reversed.

The term "spinup" describes the effect of the motor torque on the inertial angular

10
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Figure 1. The Unbalanced Gyrostat. The rotor imbalance is denoted by the point

masses.

velocity of the balanced body, normally the rotor. Strictly speaking, because we have

exchanged the names of these components, this term is no longer applicable because

it implies that this angular velocity will increase with time. The opposite holds true

in our case; the balanced body is required to slow down. As a result, this maneuver

would be more accurately described as "platform despin," or just "despin." In the

former case, the motor torque is positive while in the latter, it is negative. This is

the only difference between the two. If neither body were specified, both spinup and

despin would be indistinguishable. For this reason, rather than become embroiled in

semantics, we refer to both cases interchangeably throughout this thesis.
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2.1.2 Frames of Reference. There are an infinite number of reference

frames about which the equations of motion may be expressed, but only three of

these are potentially sensible choices. All three are body-fixed frames with origins at

the center of mass of the spacecraft. Because no external forces or moments act on

the system, they may be coniudered inertially-fixed. The first of these is defined here

as the balanced-body frame. It is actually the principal frame of the platform itself,

but it is fixed to the rotor. The second frame that we consider is the principal frame

of the spacecraft. Due to the presence of the imbalance, these two frames do not

coincide. Finally, we look at a third frame which at first glance appears to have no

physical significance. As we show later in the chapter, this non-intuitive coordinate

system is actually our frame of choice. It is denoted here as the pseudo-principal

frame. As dictated by convention, all frames are "right-handed" and orthogonal, and

they can easily be "rotated" from one to another via Euler angle transformations.

In this thesis, each reference frame is written as follows: FP refers to frame a with

unit vectors {ftl, 4 2, ia3}. Hence, the balanced-body frame is FP, the principal frame

is JP, and the pseudo-principal frame is e.P.

In the balanced-body frame, the b3 axis is aligned with the rotor, whose direc-

tion is given by the vector a, while the bi and b2 axes coincide with the transverse

axes of the platform. Hence, b3 = a. This is shown in Figure 1.

The principal frame, FY, is obtained from F by a simple "2" rotation. This is

also shown in Figure 1. In the axial gyrostat, both of these are coincident. For this

special case it is most convenient to express the equations of motion in the principal

frame because the products of inertia disappear, leaving a diagonal inertia tensor

which reduces the complexity of the governing equations. However, as we shall see,

these equations expressed in F- for our particular model are still too abstruse due

to the dynamic imbalance of the rotor. As a result, we abandon the principal frame

in favor of Y-, which is not shown in the figure. This frame presents us with the

simplest form for our equations of motion. It allows us to account for the dynamic

12



imbalance of the rotor while preserving the diagonality of an "inertia-like" matrix.

The term "pseudo-principal" is used because YP is not actually the true principal

frame of the spacecraft. This is explained in more detail later in the chapter.

Kinsey formulated the governing equations with respect to YP. In this frame,

the moment of inertia tensor for the unbalanced gyrostat has the following form:

Ill 0 113
Ib= 0 1ll 0

130 133

The products of inertia, 113, represent the dynamic imbalance of the rotor. These

complicate the governing equations by introducing certain terms which would disap-

pear with the selection of a better coordinate system, as shown later in this chapter.

Rather than doing this, however, Kinsey simplified them with yet another assump-

tion (one which we are able to avoid): the magnitude of the rotor imbalance is very

small. In so doing, the equations become less involved since the high order imbalance

terms are neglected. But at the same time, the applicability of Kinsey's equations

are restricted to slightly unbalanced spacecraft only. By following the methods of

Hughes (11) and Hall (5, 7, 8) and using YF as our frame of choice, we avoid these

problems altogether in our particular formulation. Unlike Kinsey, we do not restrict

the magnitude of the imbalance. As a result, our equations of motion are applicable

to more general unbalanced spacecraft.

2.2 Deriving the Governing Equations

The rotational motion of the system is governed by a set of four scalar differen-

tial equations. Three of these arise from Euler's equations, which are only adequate

to describe the motion of a single rotating rigid body, while the fourth accounts for

the dual-spin nature of the system. Since we are only interested in studying the at-

titude dynamics of the spacecraft, translational motion is irrelevant. As mentioned
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above, (13) and (14) derive these expressions with respect to Fb. We develop ours

in terms of both FL' and )'P. Our purpose here is to justify our selection of the

pseudo-principal frame over the other two.

2.2.1 The Principal Frame. Euler's equations state that the sum of all

external torques acting on a spinning rigid body is equal to the rate of change if its

angular momentum. In vector form, this is given as:

M6 = h 6 +wxhe (1)

where, according to Hughes (11:67):

h e = I1 6j + I Ia'. (2)

The variables and parameters in both expressions are defined as follows:

me = sum of all external torques acting on the system expressed in Y'

h• -=system angular momentum expressed in Yr

e - system inertia tensor expressed in Y'

wý _rotor inertial angular velocity expressed in F'

a' unit vector denoting direction of platform/rotor spin axis expressed irit

I. = platform moment of inertia about ae

w - platform angular velocity relative to the rotor about a.

Since the vector ae lies in the ee plane, it has the following form:

a,

a6 = 0

a 3

14



This parameter determines the degree of rotor imbalance. Furthermore, the term

w~x is a skew-symmetric matrix formed by the components of a,. It looks like the

following:

0 -W 3  W2

wx = W3  0 -W,

-- tW2 W 1  0

When this is post-multiplied by a column vector v, the cross-product w' x v is

obtained.

Because we neglect the effect of the external torques (Me = 0), Equation (1)

may be rewritten in terms of &e, giving a system of three coupled, nonlinear ordinary

differential equations.

&C = -wexhe (3)

From this point the superscript e is dropped from the notation. It is implicitly

understood, unless otherwise indicated, that all vectors and matrices are expressed

in •.e

The fourth expression required to complete the set of governing equations is

based on the rate of change of the platform's inertial angular momentum due to the

spinup motor torque. This angular momentum is defined as follows:

hp = Ipwp (4)

where

Ip inertia tensor of the platform expressed in JP

wp platform inertial angular velocity expressed in P.
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Another important expression needed here is the relative spin rate between the plat-

form and rotor:

w, -=wp - wR w=.a. (5)

We are mainly interested in the component of hp along the relative spin axis since

this is the only component affected by the spinup motor torque, g.. We denote this

as h.. Because the direction of h. is known (it points along the vector a), all we

need is its magnitude:

h. = aThp.

Substitution from (4) gives

h.= aTIPWP. (6)

We now apply some elementary algebra to Equation (5). First, we solve for cp in

terms of the other variables. Afterwards, we insert this result into (6) to get

h. = aTIp(wR + w.a). (7)

Because a coincides with the symmetry axis of the platform, aTIp = /haT, trans-

forming (7) into

h= I.aTwR + 18w.. (8)

Its time rate of change is therefore

h.= IaacwR + I*Wý.

or simply

ha = g' (9)

since this change is the sole effect of the motor torque. Figure 2 shows both h and

ha as they appear relative J-6 and Y.- The nutation angle, 17, is also shown. This
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a-=b 3  h

h.

Figure 2. Angular Momentum Vectors Relative to the Balanced-Body and Princi-

pal Frames

variable is defined as the angle between the rotor spin axis and the system angular

momentum vector.

Together, Equations (3) and (9) are the governing equations expressed in the

principal frame. To emphasize this point, we write them below as a single set of

equations:

h = ga. (10)

As innocuous as these appear, their explicit scalar forms are actually quite cum-

bersome. They are obtained through rather tedious algebra and are summarized
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below:

h-(h3 - h,3 ) h21.aja3[(hj - h. 1)(13 - Ifaa2) + I~ala 3(h3 - h..3)]
2 +aD1 2 . aa2) - Iaa) 2 ]13 - Ia 3 + (I - Ioa')[(Ih - Ioak)(Is - Ia) - (I(aa))

12

=h[(h- - hI.l)(13 - I.a2) + I.ala3 (h3 - h.s)] _ h/(h 3 - h,.)
(I -, Lai - I.a) - (I.aja3) 13 - I.a

hiI.ala 3[(hI - h. 1)(13 - ILa3) + Iaala 3(h3 - h.3 )]

(13 - Zea2)((j, - a 2)(13 - 1.a2) - ((.ala)) 2 (

h. hh 2  h 2[(h, - ha.)(13 - .a 2) + I.ala3 (h3 - h.3)]
h3 2) 3 2)(13)

12 (h - I.al)(13 - I.a )- (I.ala3 )2

- g (14)

where

hi, h2, h3  components of h in the three principal directions

ha., h•3  components of h. along e1 and i3, respectively.

Rather than proceed from here with our analysis, we need to find a more

manageable set of equations. By deriving them in the pseudo-principal frame, YF,

we can achieve this goal. Furthermore, by defining a simple set of dimensionless

parameters, we are able to reduce them to an even easier form with which to work.

2.2.2 The Pseudo-Principal Frame. The complexity in Y' results from

the rotor's imbalance. Although this coordinate system is the principal frame of the

entire spacecraft, the inertia tensor of the rotor alone is not diagonal. It is therefore

not aligned with any of the principal directions. To remove its complicating effect

from the derivation, we need to find a suitable expression for the spacecraft geometry

in which the imbalance is "absorbed" into the system's overall moments of inertia.

The frame in which this resulting inertia-like matrix is diagonal is defined here as

the pseudo-principal frame. To do this, the model must first be transformed into
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an apparent gyrostat as defined in (11:158). Instead of writing the inertia tensor of

the spacecraft in its own principal frame, as given by I, we need to diagonalize the

quantity I - IaaT, the result of which we denote as J. The rotation matrix Q which

gives this transformation therefore enables us to write the variables and parameters

from the principal frame in terms of YP* Thus, we define the following terms:

J Q(I- IoaaT)QT (15)

m Qh (16)

S QWR (17)

a Qa. (18)

Their explicit forms are summarized in Appendix A. Note that J has the following

form:
J1  0 0

J= 0 J2 0 (19)

0 0 JA

From this it is clear that P'F is the principal frame of the apparent gyrostat.

We are now ready to develop the equations of motion in terms of this new

coordinate system. As before, we obtain Euler's equations in terms of the angular

momentum m. Then we decompose this vector into three separate scalar expressions.

The rotor angular momentum h. is the same here as in Ye; being a scalar quantity,

it is invariant regardless of the coordinate system in which it is derived. Just as in

references (5:28) and (8), ve .dha1 define dimensional time to be 1, and the first time

derivative to be dO/di.

We begin by considering Equation (2) once again, rewritten below.

h = lIwR + I/•wa.
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Solving for loW, from (8), we substitute this expression into the above to get

h = IwR + h1a - IaT wRa

or, equivalently

h = (I - IoaaT )wR + hka.

Next, solving for WR gives:

OR = (I - I.aaT)-l(h - h~a).

Here we apply the trans'.7 rmations given by Equations (15) - (18), leaving us with

P = J-1(m - h~o). (20)

This relation becomes useful after we find the pseudo-principal expression for Eu-

ler's equations. Following a procedure completely analogous to the derivation of

Equations (10) in FP, these are written as

dm
dt

Ah=
-dh. (21)

Substitution of (20) into (21) gives the final form of the vector equations:

dmdm J-3(m - h.a)Xm

dha gY. (22)

These expressions are easy to decompose. Recall that J is a diagonal matrix

given by Equation (19). We may express the other pseudo-principal variables and
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parameters in terms of their components as well:

mrl /V1 Q1

m= m 2  , V2= ,and a= 0

M 3 J V3 J 3

By substituting these into (22), we are left with the following scalar equations of

motion:

dmi 1 (.1J2 - J 3 ) m2h.Ca3 (23)
di -mm J2 J3 AJ

dinM2  (J 31 ) - m1 + rhe 3 mAh~a, (24)

di3 J1 3

din 3  (Ji 1 -.J 2  + M2hal (25)di ( ili.J1$ i J1 2S
dh - (26)

Note their relative simplicity compared to their P counterparts [Equations

(11) - (14)]. An important consequence is the ease with which they can be nondi-

mensionalized. Analyzing our model gyrostat in dimensionless form further simplifies

the equations, as we show below.

2.3 Dimensionless Equations of Motion

Nondimensional analysis permits us to examine the spacecraft's dynamics from

a general standpoint. The use of dimensionless parameters lets us view the behavior

of a whole series of similar systems from a single set of governing equations. This

fact, in addition to the analytical simplicity it provides, serve as justification for

the extra effort involved in finding the nondimensional forms. The most important

step in this procedure is to define the parameters. It is best to do so in a way that

preserves their physical significance. Our technique is an extension of that used in

references (5, 7, 8).
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First we nondimensionalize the inertia-like terms Jn, (n = 1, 2, 3), as shown in

Equation (19). This is made possible with the following definition:

=J 3 +I a.2

J3 is the parameter by which all the inertia-like terms are scaled. Note that this

definition is not arbitrary. Its physical significance becomes apparent when compared

to Equation (85) in Appendix A. As can be seen, J3 is the bottom diagonal term

of I = QT[j + i, atT]q. We could make a similar definition involving J1, i.e.

.Ji = J +/D but both definitions taken together are unnecessary; one of them is

redundant since all inertia-like terms must be scaled by a common factor. In this

analysis we ignore the latter. The dimensionless counterparts of the J, are thus

defined as follows:

i 1 =1-- A J=- A1- (27)
J, I -ii

i2 =1- J J22- _A (28)
A2  1 -i 2

i3-- =>3 J3 iJ3 3 (29)
J3  i J 3 ----, J 3  (29)

Next, keeping in mind that m = Iml, the dimensionless momentum components are

defined as:

Xl = mi/M (30)

X2 = m 2/m (31)

X3 = m3/M (32)

Since external torques are neglected, angular momentum is conserved. Hence,

m= m+ m + m3 - constant.
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Substitution of the corresponding nondimensional parameters translates this to

2 +X2 +X2
z1 ± z2 + 33 = 1.

This fundamental constant is useful in our analysis. It is a first integraL

We still have one dimensionless angular momentum variable to define. This is

related to the inertial angular momentum of the platform, h.:

ha =(33)
m

Finally, the expressions

m = s (34)

= - mJ (35)

are the nondimensional counterparts of time and despin motor torque, respectively.

We now have all the tools necessary to build our model. Given Equation (23)

din (J2 _- J3A A m 2ha 3
- = m 2m 3 \ J )~ ]

we replace J2 with its alternate form from (28) so that the expression simplifies to

dMi i2  m 2haC1a

diJ3

By making use of Equation (34), the left hand side undergoes the following trans-
formation:

dmi i din1  m .

d! A J dt = A MI.

Dividing both sides of the equality by m2 and then multiplying by J3 eliminates the

remaining dimensional terms from the expression. The dimensionless equation in
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the pseudo-principal P direction is therefore

-l = (i 2z 3 - /La.)Z2. (36)

The other three equations result from similar manipulations of Equations (24) - (26).

Their final forms are summarized below:

i2 = -iIzXz 3 + A[a3zI - ai(1 - il)z3] (37)

i3 = [(ii - i2)zI + (1 - i1 )jsca]:, (38)

(39)

Equations (36) - (39) bear some similarity to the governing equations of the

biaxial gyrostat (7). The main difference between both models is the fact that the

biaxial gyrostat has two balanced axisymmetric rotors which act analogously to our

single balanced platform. Thus, the biaxial system has two explicit, independent

rotor angular momentum terms, defined in reference (7) as is and 112. Close ex-
amination of our governing equations reveals two "rotor terms" as well. These are

the components of p in the pseudo-principal P, and P3 directions, i.e. 1sal and Aa 3.

Hence, we may conclude that the unbalanced dual-spin spacecraft is merely a spe-

cial case of a biaxial gyrostat whose rotor speeds are directly proportional to one

another. This analogy is easily extended to the more general triazial gyrostat where

the rotor is arbitrarily positioned.

2.4 Rotational Kinetic Energy

A special dynamic case to consider is that of unperturbed motion, or equiv-

alently, zero motor torque (e = 0). When this occurs, the equations of motion are

integrable, allowing us to find closed-form analytical solutions to (36) - (39). This

procedure is examined in great detail in the next chapter. We mention this special

case here in order to introduce a useful variable related to the system kinetic energy.
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From Equation (39), we see that zero motor torque corresponds to the condition

, = constant. (40)

Because p is an invariant quantity, (40) is a first integral. Recall that when the

equations of motion were initially derived, another first integral had been introduced

in the guise of conservation of angular momentum:

z1 + Z2 + z3 = 1. (41)

In addition to these, there is yet a third constant of motion. Since we are considering

the zero motor torque case as well as neglecting energy dissipation, there are neither

external moments nor internal axial shaft torques acting on the system. Therefore,

kinetic energy T does not change. Conservation of energy provides us with another

useful first integral. It is derived here in both dimensional and nondimensional form.

From Hughes (ignoring the translational kinetic energy terms):

1 TiWR 1 2+ Iawaa WR.2 R .+. (42)

Note that this is written in ._. We can easily translate it to Y*P using the transfor-

mations given by (15) - (18). Hence,

11 i2

(J + Ia2IaW 2 +IoWATV (43)

Since a = [a, 0 a 3 ]T, the dyad C,,T looks like

al 0 alas

M = 0 0 0

a103  0 2
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Substitution of this and other relevant parameters into Equation (43) gives

J1 + IAl' 0 I.aCa3 VL ]l1 1i
T = [V2 Pi3 ] 0 J2 0 V2 + 1I.W± + I.W. [aC 0 a 3] JV2

Ia.Ck 3  0 J3 + IA3 JV 3 , V3

Matrix multiplication reduces it to its more convenient scalar form:

[1 + J3V3 + I(t, Vl U;.)2]

T = + Jw22 + Jt33+ ( --3 )

The last term inside the square brackets can be simplified to h./I,. This comes from

application of the appropriate Euler transformations to Equation (8). Thus we get

j (V'2+J 2L2 "+JAV 1. (44)

It would be convenient to express T in terms of the angular momentum components,

(Mi, M 2 , in 3 ), rather than angular velocity, (vi, v2, v3). Doing so permits us to rewrite

it in terms of our predefined nondimensional parameters. Equation (20) helps us in

this endeavor. It provides us with

ml - hailLi1 -- J,
m 2

Vi2 = T 2J2
m73 -- •a•3

V3 =

Substituting these into (44) results in

) m (m - ha)2 2]

T m= - haa + M-2 + (M3 - IoJ = constant. (45)
2 L A1 A3 I.
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Our next step is to nondimensionalize this expression. Note that if we ignore

the last term in the equation, we are still left with a constant which we define as

TO = I [(m Jhl) + m + - J3 (46)

such that T = To+h./(21,). Hughes refers to To as an "energy-like quantity" because

it lacks the term we ignored.

Multiplying both sides of Equation (46) by Js/m 2 produces

ToM2 ( -2 - il) + Z2(1 - i2 ) + (ZX - 101)']. (47)

We now have a dimensionless expression for kinetic energy. Although this looks like

a simple equation, it is not in a convenient form to analyze rotor spinup (e # 0); as

shown in Chapters 4 and 5, this quantity plays an important role in the discussion.

With this in mind, we need to find a way to simplify it further.

A new variable y is defined to satisfy this need. It results from the manipulation

of T in such a way to preserve its invariant nature. This can be done if y is defined

as a combination of !t and the other first integrals,

y = f(T,A I,,,, + zX + z).

Written explicitly in terms of arbitrary multiples of these expressions, we have

y =k1T+ I~ji+ k~r2 + k4z 12 + M2 + _2)

where kI, k2 , k3 and k4 are constants which must be determined. The problem we

now face is how this is done. By expanding (47) and collecting terms, this becomes
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more obvious.

-= 1{(z2 + X2 + X4) + 2A[zial(il - 1) - D3C3] + s 2 [a2(1 - i1 ) + a]] - (ilz + iX2 z)}

First, arbitrarily setting k, = 2 eliminates the factor of 1/2 altogether. Next, by

choosing k3 = --a) + a3] and k4 = -1, the first and third terms in

disappear. Finally, since the coefficient of A in this equation is not constant, the

second term cannot be eliminated. Therefore, the best choice for k2 is zero. By

making these choices, the final form of the energy-like first integral is

= 2j[(ii - 1)alzl - (iazI + i2z2). (48)

In the perturbed system (e 4 0), u is no longer constant. As a result, energy is not

conserved so that y varies with time. Its first time derivative is given by the chain

rule

+I Z3

into which Equations (36) - (39) are substituted. This gives:

S= 2e[(i1 - 1)alzl - a 3Xs]. (49)

We now have all the tools necessary to study the gyrostat's dynamic behavior

during spinup. For rigid body dynamics, this does not generally require examination

of the system kinetic energy. Kinetic energy is normally important when dissipa-

tion is considered. Despite this fact, we show in Chapters 4 and 5 that it actually

simplifies our analysis. Before doing so, however, we examine the special case of

unperturbed motion in the next chapter. An attempt is made to obtain the solution

of the equations of motion in terms of Jacobi's elliptic functions.
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IlI. Special Case: Zero Motor Torque (e = 0)

In the previous chapter we found the dimensionless equations which govern the

behavior of the gyrostat. For convenience, they are summarized below:

S= (i 2X3 - (50)

i2 = -ilX123 4- l[la 3 X1 - C(1 - il)X 3] (51)

i3 = [(il - i 2 )X 1 + (1 - i1)pa1]- 2  (52)

J= (53)

= 2e[(ii - 1)alz: - a3 X3] (54)

These equations are analytically soluble only when the motion of the system is

unperturbed (e = 0), implying that p, and therefore h., must be constant. This is

the subject of the present chapter. Specifically, we attempt to develop their exact

analytical solution in terms of Jacobi's elliptic functions using a variation of the

technique developed by Wittenburg (22).

When the system is perturbed as in spinup, the equations are no longer in-

tegrable. This means that an exact analytical solution cannot be found. However,

for small perturbations, i.e. small values of e, their solutions can be approximated

from those of the unperturbed system. This has been done for the axial gyrostat.

An unfortunate consequence of the rotor imbalance in our particular model is that

even these unperturbed solutions cannot easily be expressed. Theoretically they do

exist, but there is no known practical form in which they may be written. As a re-

sult, an analytical approximation of the perturbed solutions is not readily obtainable.

Therefore, our entire spinup analysis is based solely on numerical integration of the

governing equations. Despite this fact, we press on with our analytical solution only

to show how they can be found.
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Although we employ Wittenburg's technique for our model, there are three

important differences to bear in mind. First, Wittenburg used dimensional variables

and parameters whereas we use the nondimensional ones introduced in Chapter 2.

Second, Wittenburg solved the equations in terms of angular velocity. Since ours

are based on angular momentum, we need to modify the technique to take this

into account as well. Third, Wittenburg studied the specific case for which w,,

rather than h., is constant. Hughes (11:158-161) shows that both of these cases

are analytically similar. The main thrust of this exercise is to reduce the three i,,

(n = 1, 2, 3) equations into a single expression. Since e = 0, this is a separable first

order differential equation from which a closed form solution can theoretically be

obtained.

The tools needed for this exercise consist of Equations (50) - (52) and the first

integrals arising from momentum and energy conservation:

1 1 3 (55)

21[(ii - 1)al z = - -- (a 1 I + i 2=) = 2 . (56)

Adding a multiple of (55) to (56) simplifies both by eliminating a common term

and producing a compact form of the two. Inspection of both equations leads us to

conclude that the easiest term to eliminate is Z2. Multiplying (55) by i2, and then

adding it to (56) gives:

(i 2 - il)aZ2 - 21,a,,(1 - i1 )X 1 + i 2 =X - 2paXs3 = i 2 + Y.

A B

This expression must be rearranged in order to facilitate future changes of variables.

This is done by adding and subtracting

( i 2 - - i l ) "1 g1 ---( l "i i i ) ]

i2 -( I
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to the polynomial denoted by A, while adding and subtracting

i2[l

to that denoted by B. This unusual algebraic manipulation changes our compact

first integral into

[ At a( 1 - i) 12 . ! 2 3 pa [pait(i - il 1) 2 
_(pa 3 )2

_

(i2 - il) Xi+ i2 X3s - _ = i j+ Y
I 2 -- i1 I 2i ti

If we define a constant function of pt as follows:

[pI,(1 - il)] 2 + (IM3) 2

i 2 -i1 i2

(constant since e = 0), the combined first integral reduces to

(i2 -i) X- i +i2 3-& = D(p) + y. (57)[1 22 21

$ 2 -- i$I IJi

3.1 The First Change of Variables: X2 ==* (P

Having found Equation (57), we now introduce our first set of variable substi-

tutions. Letting

A -- D*(__)-+y and f_= D*(p) +y
i 2 - il i2

Equation (57) takes the following form:

{Zf - [1a0(1 - ii)]/(i2 - i1 )} 2  [X3 - pa 3/i 2]2

+ f

The appearance of this equation hints vaguely at a familiar trigonometric identity.

In fact, this is Wittenburg's intent. As we now show, not only do we make use of the

trigonometric functions sine and cosine, but their hyperbolic counterparts as well.
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Case If, I f3 [(J _ _
I > 0 > 0 [Pal (1 - il)J /(i 2 - il) + V'Tco1 CO 11037iz + V'IT3sin Wo
1I > 0 < 0 /ACII(l - il)II(i 2 - ii) + ,7ITcosh~ W /Aa/i2 + v'-T3sinh (

III <0 >=0 [pa1 (l - il](2- i)+ V(-flsinh~ W ________+________WIV = 0 = 0

Table 1. Expressions for zi(W) and X3(W) for Each Possible Case

Note that there are four distinct cases to consider based on the signs of f, and

f3. At this point we introduce a new variable, W. For each case, we rewrite zi, X2,

and M3 in terms of this new parameter. These are summarized in Table 1. In each

case, conservation of angular momentum allows us to write X2(9P) in terms of the

other dimensionless angular momenta:

Z2(Vo) = + 1 -±- z(). (59)

Also note that, at first glance, Case IV presents us with a dilemma. It implies that

D*(I&) = -y so that mi(w) and Z3(W) must have indeterminate values. In fact, we

need not concern ourselves with this particular situation because it corresponds to

a singular equilibrium point on the surface of a momentum sphere. This concept

is explained in more detail in the next chapter. Also, note that there is no case in

which both fl and f3 are less than 0. This is impossible since Equation (58) would

not be satisfied.

At this point the governing equations can be expressed in terms of the single

variable (p. Clearly, p must be a function of time. Since there are three distinct

cases for which this parameter can be determined, we must derive three distinct

expressions for W(t). In so doing, we deviate slightly from the method outlined

in reference (22). Whereas Wittenburg based all subsequent calculations on the

differentiation of the energy equation, we shall do the same using our expression for

momentum conservation. We choose this route because Equation (55) bears greater
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similarity to Wittenburg's energy equation than does Equation (56). His expression

is shown here for comparison

1W + I2w2 + 43w3 = 2T.

With this in mind, we proceed with our search for V = (p(t) by considering Cases I

- III individually. The following derivation applies specifically to Case I. We simply

state the final results of the other two since they are obtained in exactly the same

manner, using the appropriate substitutions where needed from Table 1.

Differentiation of Equation (55) with respect to time gives:

2zlil + 2z 2 z 2 + 2Z:i3 = 0

which we rearrange to get

X2i2 = -Zli% - 23i3. (60)

From Table 1, zi and zs are written as

:i3((P) = Jpi/iicosw.

These transform (60) into:

2i22 -" -@(1 1 sin V - X3 /•3 cos o). (61)

Table 1 also provides a means with which to eliminate the explicit appearance of

sin V and cos V from the equation. We can see that

23 - 110/i2
sin o =3
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Cos - [XI (1 - il)]/(i2 - il)

so that

I22 1 ( X1 22i2 fl i2 z- il/"

At this point we have a single expression for our first three governing equations in

terms of zi, X2, X3, i2, and 0o. Using the definitions of fi and f3, we can also expand

the ratios of fl/f3 and f3/fl in terms of the system's inertia parameters. This gives

- 1 ii2z 3  - [(1 /-il [

z2i2 ZI JAC1-3S ) X3 z [(2 - j _lZ Aal(1 -- i)]22 i2  - 1 Vi 2-i 1 :
221 2 _P {21 (22-2 -2 - -11 12

=- (X -3 - JA3)- z 3 [(i 2 - il)X 1 - ati(1 - ii)]}
i2(1i2 (i)

2-_ il) [i1Z: 3 - JA~3XI + Pacl(1 - il)Z3]. (62)

We have reached a significant point in the derivation, for if we compare the term in

the square brackets in Equation (62) to our original equations of motion, we find that

it is equivalent to -i2! Hence, this seemingly complex expression can be condensed

into a very simple form:
M2 (63)

2 = -o *i2(i2 - il)(

Furthermore, substitution of Equation (59) gives

1• 1 -- X3 -- rT2-•oi(i2 il)"

We can ignore the negative sign in front of 0 and substitute for z1 and z3 from Table

1 to get an expression solely in terms of Wo and 0:

+ 1- [Pal(1~l__ ) + Of -cos V o] ýý + Vf/7sinj]p i2 (i .

i2 ' - $l i2 Oi2(i2-- il)
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Finally, noting that this result is separable, we can rewrite it as

7+ - (64)

Thus is only possible when the motor torque is zero. If this were not the case, then

ps is not constant over time.

Cases II and III yield similar results. By following the same procedure, we get

for Case II:

± i 2(i2 -ii)IJdt = ~

-) - 1-+ Vf cosh (o 2  + V/3 sinh o]2

(65)
and for Case III:

- ~d•

ýF&2(il-i-) I/dt[s'(1•i) + vT cosinh (I 2 - [8-ý + v-3 coshV]2

(66)

The right hand sides of Equations (64) - (66) are elliptic integrals. In general,

an elliptic integral has the form f R [t, V'NKi dt, where R is a rational function and

P(t) is a third or fourth degree polynomial having unique (nonrepeated) roots (2:1).

Legendre had shown that there are three canonical forms of this general expression

denoted by the terms "elliptic integral of the first, second, and third kind." According

to Byrd and Friedman (2), our expressions fall under the first category.

Having found the elliptic integral solution, we have shown that our model is

analytically similar to the axial gyrostat. However, our work is not yet complete.

Recall that our ultimate goal is to obtain an explicit, closed-form expression for

our "fast" variable ( (which is a transformation of our real fast variable of interest,

02). Equations (64) - (66) are essentially of the form t = F(cP). Thus, we must

invert them to get V = F-1 (t). But (64) - (66) are not in a form convenient for
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further analysis. Fortunately, Wittenburg developed a procedure to "normalize"

these equations into simple polynomials. As explained later in the chapter, the final

form of the solution depends on their roots, as other authors have shown (3, 5, 8, 17).

Its main drawback, however, is that another change of variables is needed. Hence,

the evolution of the fast variable takes the following form:

As we did above, all work is shown explicitly for Case I while the results of the other

two are simply stated.

J-2 The Second Change of Variables: Wo == z

The new incarnation of the fast variable z = z((p) takes either form in Table

2:

Case z(V)

I tan(W/2)
II and III tanh((p/2)

Table 2. Second Change of Fast Variables

In order to make use of this new expression, we expand the right hand side of

Equation (64) so that it becomes:

I (c, sin2 (P + c2 cos 2 p + c3 + 2c4 sin sp + 2cs Cos W)-1l 2d W. (67)

where

C1 =- f3

C2 = - fl

rZal( l., 2 _,a )2

C i2 -i \ i2/
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pasv/-Ji
C4 

=-
i2

C5 =

i2 - i2

We then substitute the appropriate change of variables from Table 2. By making

use of the following trigonometric identities:

for Case I:
2 tan 0 1 - tan2 0

sin 20 = - adcs21 + tan2  and cos20 = 1 + tan2

and, for Cases II and III, which we include for completeness:

2 tanh 0 1 + tanh2 0
sinh 20 - and cosh 20 - 8I - tanh2 8 1 - tanh 2

(67) is transformed into

2f[c,(4Z4 \)(+C2 (1+-zW Z4+ (3+C 4z +251 -2-12dz
2 -l+ 2 2 +I 4 +c2 4 1+ W -)+c 3 +c 4 24 G +2c '+z2)J +z2

or, in normalized polynomial form:

21 
dz

J/(C 2 + c3 + 2c5) + (4c4)z + 2(2c, - C2 + Cs)Z 2 + (4c.)Z3 + (C2 + c3 - 2c6)Z4
(68)

Although Wittenburg leaves the solution in integral form, we shall take a step back-

ward and express it as a differential equation. Doing so reminds us that it is still

an equation of motion. Supplanting the right hand side of (64) with its normalized

transformation, then rearranging appropriately gives
1

i = :±1- (il -- i)/(C2 + C3 + 2C5 ) + (4c 4 )z + 2(2cl - C2 + c3 )z 2 + (4c 4 )z 3 + (c 2 + c3 - 2c 5 )z 4

2
(69)
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Through a similar procedure, the normalized differential equations for Cases II and

III are both represented by
* 1

z V12(il - i2-) v/(a2 + a3 + 2a 5) + (4a4 )z + 2(2a, + a 2 - a3)z 2 
- (4,)Z 3 + ()4 + 3 - 2a)z 4 .

(70)

The difference between the latter two cases is in the value of the coefficients. For

Case II:

a, = f

a2 = fl

a3= [I~al(j _il)] 2  (A/L3)2
i2 - il \i2

a 4 = i2

i2 il

whereas for Case III:

a,

a 2  = f=

a3 = 1 [ICsI(1 - ii)] 2 4 2

a 4 =

i2 il

a,5 =-

At this point we have reduced the number of governing equations from five to

three. Two of these are the slow equations expressed by (53) and (54) since they are

clearly of O(e). The third is fast, embodied by either of two differential equations

which are indirect functions of the dimensionless angular momenta (zl, Z2, and Z3).
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These case-dependent equations are given by (69) and (70) as well as the appropriate

form of their respective coefficients.

Since e = 0, both expressions are separable. Thus, they may be rewritten in

the following form:

J dt=21 dz (71)
= 2/iz(i i -Vil)V+po IZ + pZ. + p 3Z ' + Ns Z

Equation (71) is an expression for time in the form t = F(z). The analytical solution

of the fast variable must therefore be obtained by inverting the expression to get

z = F- 1 (t). The final form of z depends on the roots of the quartic polynomial on

the right hand side of (71). The act of finding these roots, however, is by no means

an easy task. This has already been done for the axial gyrostat, whose solution is

relatively simple since its quartic polynomial is factorable into two quadratics. In

our case, we are not so fortunate because our polynomial is not as simple. Even

though Mathematica is able to find a closed form expression for each root, they are

all large enough to fill several pages. Despite this difficulty, the mere fact that the

roots can be found proves that an exact analytical solution does exist.

Assuming we are able to find the roots, our next step is to rewrite Equation

(71) in one of the standard forms defined in (2:95). Since this equation contains the

integral of the square root of a quartic, it has the following general form:

= J aO(ý + rl)( + r2)(ý + 3)(ý + N-)

Inverting this expression to get the explicit solution for z now depends on whether

the roots r,, (n = 1, 2,3,4) are real or complex. In general, the final solution looks

like either of the following:

S
2s

z(u;k) = - asn'(u;k)l
1 - a 2sn 2(u; k)
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or
"IL

Both expressions are derived for the axial gyrostat in reference (5:Ch. 5). Although

our model is not the same as Hall's, the general form of these expressions are identical

(with the exception of the value of the constants) since they arise from the same

standard forms in reference (2). Once the analytical solution for z is known, it

becomes a matter of changing the variables back to the original z2.

As can be seen, Wittenburg's procedure is extremely complicated and is gen-

erally impractical for the case of the unbalanced gyrostat. Assuming that a powerful

computer is available, it is easier to numerically integrate the equations of motion.

Despite our failure to analytically solve these equations, there are still some posi-

tive outcomes from our effort. First, we have shown that an exact analytical solution

theoretically does exist. Second, our failure justifies the approximate analytical solu-

tion found in references (13) and (14), which uses a form of the method of averaging

involving a near-identity transformation.
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IV. Graphical Representations of Spinup Dynamics (5-Ch. 4)

In Chapter 2 we develop the equations which govern the motion of our model.

Now we apply them to the spinup problem. During this maneuver, the behavior of

the gyrostat depends on its geometry, initial spin configuration (given by the initial

conditions), and the magnitude of the motor torque. In this chapter, we analyze

the effects of the geometry. Specifically, we develop a graphical tool which shows

how the physical parameters of the gyrostat, given by the moments of inertia and

the magnitude of the rotor imbalance, circumscribe all of the possible ways in which

spinup can occur. We show here that there are certain motions which are stable

over time and others which are not. All of this can be shown in the two-dimensional

plane of the slowly-varying parameters, I& and y. We relegate all discussion of the

effects of the motor torque and the initial conditions to the next chapter.

4.1 Momentum Spheres

Because all external torques are neglected in this model, angular momentum

is conserved. Hence, 01 + zX + z2 - 1, which clearly shows that solutions to the

equations of motion are confined to the surface of a unit momentum sphere. If

there is no component of torque acting along the rigid shaft connecting the platform

and rotor (e = 0), these solutions form closed curves of constant energy analogous to

polhodes on the classical momentum ellipsoids. As previously discussed, the constant

energy curves are given by

= 21 [(i1 - 1)alz1 - a3z31 - (i2z• + i 2z).

Several examples are shown in Figures 3 - 5 along with simplified sketches to better

visualize their topology. Because these sketches are two dimensional representations

of three dimensional objects, they are formed by "piercing" the spheres at the points

denoted by O and then "dilating these holes" until the spheres are flattened. These
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diagrams are drawn at different values of , for the same set of geometric parameters.

There are either two, four, or six equilibrium points on the momentum sphere

for any given value of p. This variable defines the topology of the momentum sphere.

Figures 3 - 5 depict specific situations for all three cases. Two of the equilibria

correspond to the desired oblate and prolate dual-spin conditions (0, and P, re-

spectively) and two correspond to the two possible flat-spin configurations (F1,, and

F 2.,) which may result from resonance capture, a phenomenon that is examined in

the ,ext chapter. All four are stable equilibria and are characterized by the centers

i gures 3 - 5. The two remaining equilibria are both unstable saddles (U,). The

notation used here is similar to that developed in references (5) and (8).

As the value of p is incremented, the equilibria on the corresponding series

of momentum spheres appear to shift position. For very small values of p, all six

are present (Figure 3). As this parameter increases from zero, the two unstable

equilibria converge. Eventually, a critical value of p is reached, ipl, at which both

UP collide. Since P,. is situated directly between them, all three equilibria coalesce

into a single saddle point. On a bifurcation diagram, this event looks like a pitchfork

and is therefore known as a pitchfork bifurcation. Afterwards only four equilibria

remain (Figure 4). As p assumes higher values, both Fl,. and F2 ,. approach the new

saddle. In general, F1 ,. is closer to P. than is its flat-spin counterpart, so when the

second critical value of p is reached, pn, F1l, and P. annihilate leaving only two

stable equilibria (see Figure 5). This event is called a saddle-node bifurcation.

The momentum sphere illustrates the behavior of the spacecraft's angular mo-

mentum vector for a given set of geometric parameters: i,, (n = 1, 2, 3), al, and a 3 .

The platform's inertial angular momentum p determines the topology of the sphere,

y denotes the particular constant energy curve of the unperturbed motion, and (xi,

X2, X3) pinpoint the system's exact position on this curve. During spinup, p varies

with time. As a result, y is no longer constant so that the curves are no longer closed.
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0.5F0

x2 -1 -1S2 x1

0l,

Figure 3. Momentum Sphere for a Gyrostat Having A = 0.1, e = 0, and the Fol-

lowing Geometric Parameters: i, = 0.7, i 2 = 0.3, i3 = 0.8, al = 0.5,a3 =

0.866
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0.5,-.

-0..6O.

x2  -1 -1X

Figure 4. Momentum Sphere for a Gyrostat Having i = 0.4, e = 0, and the Fol-

lowing Geometric Parameters: i, = 0.7,i 2 = 0.3,i 3 = 0.8, a, = 0.5, a 3 =

0.866
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-0.5.o0 0J 0 0.5
-0.5 - 0.

x -1 X

F2 p

Figure 5 Momentum Sphere for a Gyrostat Having p = 0.7, e = 0, and the Fol-

lowing Geometric Parameters: i1 = 0.7, i 2 = 0.3, i3 = 0.8,a 1 = 0.5,a 3 =

0.866

45



Recall that in this case, the rate of change of the gyrostat's rotational kinetic energy

is expressed in dimensionless form as

- 2e[(ii - l)aIXI - a3za].

Thus, in order to observe the spacecraft's attitude during this maneuver, a series

of instantaneous spheres must be generated at sufficiently small intervals of p, and

the corresponding instantaneous angular momentum positions must be plotted on

their surfaces. This method is extremely resource-intensive. As such, it is best

implemented on more powerful computers. Fortunately, there is a simpler way to

visualize spinup first proposed by Hall in 1992 (5). Rather than create a whole series

of three dimensional momentum spheres, all we need to do is look at a single plane

defined by p and y.

4.2 The py Plane

The py plane is a bifurcation diagram which shows the evolution of the stable

and unstable equilibria on the momentum sphere for different values of p. Figure 6

shows a typical example. Later we see that this is only one of three general forms;

the shape of the plane depends on the relative sizes of the geometric parameters.

By convention, the solid lines represent all of the possible energy states of the stable

equilibria while the dashed lines are indicative of those of the saddles and separatrices

over the entire range of i. One particular sphere can be mapped to a corresponding

vertical "slice" within this plane at the value of p for which the sphere is defined.

Furthermore, a particular spinup trajectory, which covers an entire range of p, may

be superimposed on this plane so that the behavior during spinup can be easily

observed with respect to the equilibria. This is illustrated in the next chapter, when

we examine the effects of different conditions on the outcome of spinup.
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Figure 6. The /sy Plane for the Oblate-Prolate Gyrostat. The points "pf" and "sn"

denote the pitchfork and saddle-node bifurcations, respectively. il =

0.7,i 2 = 0.3, a, = 0.5, a3 = 0.866

4.2.1 Geometric Influence on the Shape of the piy Plane. The shape of the

//y plane depends on the spacecraft geometry. An unbalanced gyrostat corresponds

to one of three general types. These are termed Oblate-Prolate, Oblate-Intermediate,

and Intermediate-Prolate and are classified by determining whether the plane con-

taining the imbalance has the maximum and minimum, maximum and intermediate,

or intermediate and minimum eigenvalues of J, respectively. The nomenclature used

here are modified versions of their biaxial counterparts (7). In the pseudo-principal

frame, the imbalance is located in the PI$3 plane. Therefore, this determination

is made by comparing the magnitudes of the inertia-like quantities J1 and J3 to

that of J2 . In this analysis we assume that J, > J3 without loss of generality (the

justification can be found in (5:§3.5)), and the results are summarized in Table 3.

Since the governing equations are in dimensionless fo:m, these definitions would

be more useful if they are written in terms of the dimensionless parameters. We
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Classification Requirement

Oblate-Prolate J1 > J 2 > J3
Oblate-Intermediate J1 > Ja > J 2

Intermediate-Prolate J2 > J1 > J3

Table 3. Classification of Spacecraft Geometry in Terms of the Inertia-Like

Parameters

repeat the transformations below:

i2 -- 1 - AJ3il = 1---

-'2
J3

where J =- J3 + Ia.. Clearly, the following relations must be true:

J3 > Jn = i <<O(forn=1,2)

A" <,1 == in > 0.

Because only il and i2 explicitly appear in the equations of motion, they alone define

the shape of the py plane. Also, since we assume J, > J3 without loss of generality,

the same must be true for il > 0. These transformations change the criteria in Table

3 to those in Table 4. The alternative set of requirements for each case arises from

an inherent symmetry of the spacecraft which exists only in Y',, the details of which

are also given in reference (5:§3.5). Figure 6 is an example of the Oblate-Prolate

geometry. This form is the primary focus of this study, but examples of the other

two are shown in Figures 7 and 8.

The py plane also reveals the gyrostat's degree of asymmetry and degree of

imbalance. The former can be qualitatively determined by the size of the gap between
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Figure 8. The isy Plane for the ObaeIntermediaePoate Gyrostat: i, 0.5, i2
-0.8, a, 0.2, a3 0.9798
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Classification Requirement

Oblate-Prolate il > i 2 > 0 or i 2 < 1 < 0

Oblate-Intermediate i1 > 0 > i 2 or i 2 < 0 < ii
Intermediate-Prolate i 2 > il > 0 or il <•i 2 < 0

Table 4. Classification of Spacecraft Geometry in Terms of the Dimensionless

Parameters

U, and Fl.. The closer they are to one another, the closer the gyrostat is to being

symmetric. This can also be found quantitatively from the difference between il and

i 2 ; the closer it is to zero, the more symmetric the spacecraft. The model's degree

of imbalance may be seen qualitatively from the plane as well. In this case it is

based on the size of the gap between the two flat-spin trajectories; the smaller the

gap, the smaller the imbalance. If both curves coincide, the spacecraft is balanced.

This special case is the axial gyrostat, which is shown in Figure 9. The degree of

imbalance may also be quantitatively determined by the dimensionless parameters

a, and as. As Ja3 l approaches unity (which implies that a, approaches 0), the closer

is our model to the axial gyrostat.

4.2.2 Determination of the Equilibrium Tr"ajectories. We now derive the

evolution of the equilibrium trajectories in the ly bifurcation diagram. First we

define the conditions for equilibrium in terms of the equations of motion. We then

explain how these conditions are satisfied, resulting in the "coordinates" of the cen-

ters and saddles on the momentum sphere. This also enables us to determine their

respective energies solely as functions of u, leading to the py plots of the equilibrium

trajectories. Finally, when these trajectories have been established, we determine

their stability.
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Figure 9. The isy Plane for the Axial Gyrostat: i, 0.5, i2 =0.3, a, 0, a3 =1

Once again we return to the equations governing the behavior of the spacecraft

angular momentum:

"I = (i 2 3 -

2C2 = -i1X123 + /&[a 3 X1 - Cki(1 - i1 )X3]

= [(il - i 2 )XI + (1 - i,)Aa1 12 2

When the system is in equilibrium, (X1,os2, X 3 ) = (- 0., X2.,, X3,), all of which are

constant over time. Specifically, these values satisfy the following conditions:

i1eq = (i2X3eq - pa 3 )X2., = 0 (72)

2 = --ilXlX3eq "-+ I[ 3 I. - aI(- i)Z3e,] = 0 (73)

;3eq = [(i1 - i2)Xl,, + (1 - il)j.ta1 ]zj2 . = 0. (74)
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They are also the coordinates defining the location of each center and saddle on a

particular momentum sphere. The energy associated with these points comes from

the energy equation

yeq = 2/L[(ii - 1)calzi - a 3 X3.q] - (ixl ef + i2 2). (75)

From our discussion on page 42, we noted that the positions of the equilibria shift

over the momentum sphere as a function of it. Clearly, their energies must also

depend on this variable. Thus, if we are able to rewrite yq in terms of it alone,

the trajectories characterizing the 1&y plane can be found. For this reason, it is a

bifurcation diagram since it shows the evolution of these equilibrium points indirectly

via their associated energies.

To obtain this special relationship, we must find the expressions giving zx,, =

f,,(I&) (n = 1, 2,3) and satisfying the conditions for equilibrium. There are two ways

this can be done.

4.2.2.1 Case A. Obviously, one way to do this is to let X2., = 0 so that

(72) and (74) are identically satisfied. The other two equilibrium parameters must

therefore simultaneously satisfy Equation (73) as well as conservation of angular

momentum. They are found by decomposing this equation into a system of two

quartic polynomials, one written in terms of mi., and the other in terms of Xs,.

This lengthy algebraic manipulation results in

0= i": + 2i1 (1 - il)JIaIz[ + [(1 - i1 )21&2a2 + 2a -21

-2ii(1 - ii)/caiXi - (1 - i 1 A al (76)
o3 i _ 2ilpasza + [12a2 + (1 - il) 2 ;&2aC _ - 2i

2i,/&3 3 1 13 - ila3X3

32 (77)
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For a given geometry, the roots of these polynomials vary only with u. The (Zle,,

X3,,) roots are paired together such that (73) is satisfied. Thus, we are left with

expressions of the following forms:

• .= fi*ic)

X2.q = 0

3 .q =

4.2.2.2 Case B. When u < Apf, there exist two additional equilibria

for which Z2., cannot be zero. As a result, in order to satisfy the conditions for

equilibrium, Equations (72) and (74) must give, respectively:

= JL1 (78)
X~eq -- i2

=- 1) (79)
=q-- il - i(

These automatically satisfy (73) as well. In this case the nonzero expression for z2,,

can be found from conservation of angular momentum:

X 2e.q = -[Isal(ii 2 )]2 _ [A3] 2. (80)

Once again, for a given geometry, zl,,, Z2 .,, and zX,, are functions of u alone.

The results of either case are substituted directly into Equation (75), giving

y,• = y(p). From this, it can be shown that both trajectories found in the latter

case must be identical. Equations (78) and (79) show that they each have the

same values of Zle, and X3.,, and (80) implies that X2., must be positive for one

and negative for the other. Because the X2., parameter is squared in (75), the sign

difference is irrelevant when their energies are calculated. As a result, these paths

are indistinguishable on the Ay plane.
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At this point we briefly digress in order to explain how Apsf and .,, are de-

termined. The first of these is important because it gives the value of 1i at which

PA changes stability. Specifically, it occurs when Equations (76), (77), and (80) are

simultaneously satisfied:

0= 1 - [isfC1aii -1]2 - [Apfa__

or equivalently,

1 .2 { [ - _1)] +2  + [ ]2 }

Hence,

= {[a(ii - 1)] 2 + [a]21 -/2

The other parameter, L., denotes the specific value of is at which PP becomes nonex-

istent. It is based on the spacecraft geometry and can only be found numerically.

4.2.3 Stability of the Equilibrium Trajectories. Now that we have shown

how the equilibrium trajectories (denoted in this section as E) in the 1&y plane evolve

from the equations of motion, the next step is to determine their stability. Although

we have shown this in our previous diagrams by the type of line used to represent

these paths, we have not been able to justify this characteristic until now. By

looking at the momentum sphere, it is easy to tell which equilibria are stable and

which are not; centers and saddles are easy to distinguish because of their distinctive

appearances. Therefore, one way to determine which trajectories in the isy plane are

stable is to look at the corresponding equilibrium points on the sphere. Another way

is to make use of Poincar6 stability criteria, which are defined in texts on nonlinear

oscillations such as Jordan and Smith (12:213-218).
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In general, Poincar6 stability is defined for autonomous systems of the form

i = Z(z).

Our set of governing equations, given by (50) - (54), is clearly a particular example

of such a system. When e 6 0, their general solution forms perturbed, or nonequilib-

rium, trajectories in the py plane. These paths are labeled here as X to distinguish

them from the special case of E. In simple terms, we can show that a particular tra-

jectory E is Poincar6 stable if an initial condition near (or directly on) this path stays

arbitrarily close to it when the system is perturbed. In other words, when it changes

slowly, the nonequilibrium trajectory AK follows E very closely for all time. If, on

the other hand, NA deviates significantly, then the particular equilibrium trajectory

near which it originates corresponds to an unstable equilibrium point.

Figures 10 - 12 depict the application of these criteria to the ity plot in Figure

6. The heavy lines indicate actual numerically integrated trajectories KA which start

on the various equilibrium points at /A = 0. Note that the integrated trajectories

that start on a stable equilibrium point remain arbitrarily close to the solid lines as A

increases. On the other hawd, those that travel near a dashed trajectory eventually

diverge.

The uy plane is a valuable tool for analyzing spinup, as demonstrated in the

following chapter. However, it too has shortcomings. Because it is a two-dimensional

representation of the three-dimensional momentum spheres, there are certain impor-

tant aspects which the py plane cannot reveal. These are shown in Chapter 5 as

well. In short, there are advantages and disadvantages of both representations. The

jsy plane lacks the "depth" of the momentum sphere, but the momentum sphere

lactq the "breadth" of the iy plane. Both are useful tools in their own right, but

they are most beneficial when used together.
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V. Spinup

In this chapter we discuss the phenomenon known as precession phase lock

(PPL) or resonance capture. These terms describe the onset of unconstrained growth

in the gyrostat's nutation angle during platform despin. It is a phenomenon which

may occur in any gyrostat that is either asymmetric or dynamically unbalanced.

Precession phase lock has been studied since the early 1970s, but its explanation

continues to be debated. Kinsey et al. (14, 13:8) contend that, for sufficiently small

motor torques, this occurs when the spin rate of the unbalanced body approaches

the inertial free precession rate of the spacecraft. At this point, both the platform

and the rotor inertial angular velocities decrease toward zero. When this occurs,

the effect of the motor torque is diverted toward increasing the spacecraft's coning

motion.

More recently, Hall (6) has offered an alternative explanation which can be

clearly shown on the 1&y plane. However, this analysis is pertinent to the balanced

asymmetric gyrostat, which is a very close approximation of Kinsey's model, but is

not representative of the more general unbalanced system in this study. Reference

(6) shows that nutation growth results when trajectories of the perturbed (e j 0)

system cross an instantaneous separatrix such that they oscillate about a stable flat-

spin equilibrium point at the conclusion of spinup rather than about the desired

dual-spin center. Capture, according to Hall, is a phenomenon related to the final

energy state of the spacecraft.

In the following pages, Hall's analysis is applied directly to Kinsey's model.

In doing so, we show that the size of the motor torque is not the only factor which

influences the onset of precession phase lock. Finally, we develop an alternative

method to reduce the probability of capture of the spacecraft if a stronger motor

becomes infeasible. This involves selection of proper initial spinup conditions. From
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the results of our analysis, a new, more generalized definition of resonance capture

is offered which is a hybrid of both Kinsey's and Hall's points of view.

5.1 Kinsey's Model

Kinsey formulated the equations of motion by considering the platform and

rotor separately. Unlike Hughes (11), after whose equations our own system is mod-

elled, Kinsey defined the moment of inertia tensors of both bodies independently,

each relative to the spacecraft center of mass. The platform is both axially sym-

metric and dynamically balanced in the body-fixed reference frame, and the rotor

is axially symmetric but dynamically unbalanced. Their axis of relative rotation

coincides with the platform's axis of symmetry. Hence, the body-fixed frame about

which Kinsey chose to derive the governing equations are the principal axes of the

platform. In our terminology, this is Yb, the balanced-body frame.

Kinsey's equations of motion are expressed in terms of angular velocity rather

than angular momentum. Because they are written in the balanced-body frame,

these equations are considerably more complex than the ones developed in our study.

Kinsey carried out the analysis in dimensionless form and showed that the behavior

of the system during spinup depends on the magnitude of four parameters: the size

of the rotor imbalance relative to the spacecraft transverse moments of inertia (v),

the size of the rotor axial moment of inertia relative to the spacecraft transverse

moments of inertia (o), the size of the platform axial moment of inertia relative to

that of the rotor (J),and the magnitude of the despin motor torque (K). Throughout

the analysis, Kinsey assumed that v < 1, thereby simplifying the dimensionless

equations and allowing for the approximation of their solution using the method of

averaging via a near-identity transformation. Despite the resulting simplifications,

this approximation also leads to a major disadvantage in Kinsey's approach; it is

not applicable to the more general unbalanced system (see page 13). Our analysis,

on the other hand, is still valid in such a case. After a second round of scaling,
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Kinsey's equations provide a means with which to estimate the final cone angle of

the spacecraft during despin. This method is only applicable for final cone angles

< 300, but it gives reasonably accurate predictions (within 10%).

5.1.1 PPL According to Kinsey (13, 14) Kinsey defined resonance capture

in terms of its effect on the inertial angular momenta of both the platform and

rotor during spinup. If the motor torque is too small, then once the unbalanced

body (in this case the rotor) reaches the spacecraft inertial free precession rate, the

system starts to exhibit the undesirable effects of precession phase lock. The rotor

velocity fails to maintain its steady increase. Instead, it actually decreases while the

spacecraft's nutation angle grows. At the conclusion of this maneuver, the spacecraft

tumbles in a flat-spin. During normal despin, however, the rotor velocity exceeds

the inertial free precession rate and continues to grow until the spinup motor is

deactivated. In this case, the increase in nutation is less appreciable. Both normal

despin and precession phase lock are shown in Figure 13.

Kinsey's view of resonance capture does not offer a precise set of criteria that

define its occurrence. He asserts that precession phase lock occurs "when the rotor

rate wB is approximately equal to the free precession rate of the s/c" (14). Also,

Kinsey seems to imply that a captured spacecraft has a final nutation angle of ap-

proximately 900 while smaller, albeit significant, cone angles render escape. Although

this seems like good qualitative reasoning, it is nonetheless a generalization. To get

more precise conditions, we approach this phenomenon using energy-based criteria

similar to those developed in reference (6). In this reexamination, more rigorous

conditions leading to capture are provided. Before proceeding, however, it is helpful

to translate Kinsey's parameters into those used here.

5.1.2 Kinsey's Model Thanslated into the py Plane. Kinsey's model is reex-

amined using the tools developed in the previous chapters. First, his dimensionless

parameters are translated into those defined in this thesis. The dynamics of Kinsey's
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Figure 13. Capture and Escape as Defined by Kinsey. The spacecraft is initially in

the all-spun configuration. For the smaller motor torque (K = 0.4), cap-
ture occurs when the rotor angular velocity approaches the inertial free
precession rate (IFPR). Both the platform and rotor angular velocities
approach zero. In normal despin (K = 1.2), the rotor rate continues
to increase while the platform rate approaches zero (escape). Kinsey
Parameters: v = 0.005, or = 0.667, J = 1.25
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Kinsey J Tsui

a = 0.005 il = 0.33313
= 0.667 i2 = 0.33308

J = 1.25 i3 = 0.55553
CJ(0) = 0.00998 a, = -0.01501
w2(0) = 0 a 3 = -0.99989
WA(0) = 1 z10 = -0.02499
CB(0) = 1 z,0 = 0

3s0 = -0.99969

Table 5. Translation of Kinsey's Geometric Parameters and Initial Conditions

Kinsey Tsui
K

0.4 -2.1942 x 10-
0.6 -3.2913 x 10'
0.8 -4.3884 x 10-4
1.0 -5.4854 x 10-4

1.2 -6.5825 x 10-4

Table 6. Translation of Kinsey's Dimensionless Motor Torques

model are then projected onto the py plane, and two of the different spinup condi-

tions he examined are shown using the energy-based technique for comparison. The

equations and algorithm used to translate Kinsey's dimensionless parameters are ex-

plained in Appendix B. The translated geometric parameters and initial conditions

are summarized in Table 5 and the motor torques are shown in Table 6.

The py plane associated with these parameters is shown in Figure 14. Because

il > i2 > 0, it is an Oblate-Prolate gyrostat. Of particular interest are the regions

bounded within Boxes 1 and 2, which are shown in greater detail in Figures 15 and

16, respectively. The pitchfork bifurcation is shown in Box 1, and the saddle-node

bifurcation is depicted in Box 2. They also reveal other interesting features of this

particular gyrostat. From Figures 14 and 15, it is clear that for most of the spinup

maneuver, there is only one possible stable flat spin equilibrium point, and that the

saddles remain very close at all times to this particular center. This indicates that
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Figure 14. The iy Plane for Kinsey's Gyrostat

Kinsey's gyrostat is very nearly axisymmetric and balanced. Next, when Figure 16

is considered, it is apparent that this particular Oblate-Prolate geometry is different

from the ezample introduced in Figure 6. In fact, it is not too difficult to see that

Kinsey's gyrostat is qualitatively equivalent to the earlier example reflected over the

horizontal axis. Now that his particular gyrostat has been transformed into the jty

plane, we introduce the energy-based criteria for )nance capture and apply them

to Kinsey's special case.

5.2 Redefinition of Resonance Capture

Rather than explain resonance capture in terms of the system angular mo-

menta, we do so in terms of its energy. This analysis requires the projection of

the spinup maneuver onto the /ty plane. Capture is examined exclusively for the

Oblate-Prolate geometry. As did Kinsey, we assume that spinup concludes when the

balanced axisymmetric body has completely despun (#s = 0). Our analysis is not

limited to the initially all-spun gyrostat, but we include this in the discussion due
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to its relevance to Kinsey's examples. In this condition, the gyrostat is essentially a

single rigid body so that

a121 (l - il) + 3SZ3A Uo = - 2 i + ,, 2( 1 - il) "

The derivation of this parameter is given in Appendix C.

There are three types of spinup conditions for the Oblate-Prolate gyrostat.

These are oblate spinup, prolate spinup, and resonance capture. The third condition

has already been discussed and is the main topic of this chapter. Oblate and prolate

spinup as defined herein refer to the condition in which the spacecraft concludes the

maneuver oscillating about either the oblate (O,) or prolate (P,) equilibrium point,

respectively. In the 1&y plane, their spinup trajectories follow those of their respective

centers. Both of these spinup conditions, described here as dual-spin conditions, lead

to escape. Although Hall (8, 5:60) used these two terms in the analysis of axial dual-

spinners, their meaning has been slightly altered in this thesis and should not be

confused with his previous definitions.

Reference (6) shows how capture of an axial gyrostat is represented on a series

of momentum spheres. This can be easily extended to the spacecraft geometry stud-

ied in this thesis. If the final energy of the system (at p = 0) forms a closed curve

about either of the transverse (flat-spin) equilibria, the system has been captured.

If, on the other hand, this curve encircles either dual-spin center, it has escaped.

One can think of the set of all constant energy curves which surround a particular

center as lying within its domain. These are isolated from one another by the sep-

aratrices. Moreover, because each closed curve within a given domain represents a

specific rotational kinetic energy, we may specify the energy range of that domain.

A schematic representation of this is shown in Figure 17, which depicts the four

(numbered) domains at p = 0. The energy ranges of each are shown in the py plane

on top, which is a closeup of Figure 6 in the previous chapter. They are drawn at
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different values of p only for the sake of clarity; it is important to emphasize that at

motor shut-off, all of these energies are defined at i = 0 so that these energy ranges

actually overlap.

At the end of spinup, the value of the final system energy, yf, must lie in one

of the energy ranges defined at A = 0. Recall that the energy of the system is given

by

S= 21[(ii - 1)Olxl - a3X31 - (ilXz + i 2 X2)

so that

Yf= -(iiz2 +X 2z).

The equilibria are located at the following points on the momentum sphere with the

associated final energies, y7/,, obtained by direct application of this relation:

Equilibrium Point [z-[I z2 [z• 3 [I ]

Stable Flat Spin Equilibria ±1 0 0 -i 1

Unstable Saddles 0 ±1 0 -i2

Prolate Dual-Spin Equilibrium 0 0 +1 0
Oblate Dual-Spin Equilibrium 0 0 -1 0

We can now define the energy range of each domain in terms of the geometric pa-

rameters of the spacecraft:

Dual-Spin Energy Range: -i 2 < Y! < 0

Flat-Spin Energy Range: -il < Y/< -i2

With this result, the conditions for capture and escape are clear. From our previous

discussion:

Escape: -i 2 < Y, < 0

Capture: -il < yf < -i 2  (81)
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Figure 17. Momentum Sphere at the End of Spinup. The domains of all four stable
centers are shown in the I•y plane (top) and on a schematic of the
momentum sphere (bottom). Note that the sphere is symmetric at
1A =0.
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A very simple expression for the criteria leading to the possibility of resonance

capture for a slightly asymmetric, balanced gyrostat is developed in reference (6).

In the present analysis, no simple expression can be found. The existence of the

imbalance precludes the possibility of any set of simple rules. However, more general

criteria analogous to those established in that study may be stated. First, resonance

capture may occur if

ILo > PJm > PpI

yFr, < yo < y"'. (82)

These py coordinates, illustrated in Figure 18, are defined as follows:

p0 -- initial value of is which may lead to capture

,u,. -value of 1L at which the saddle-node bifurcation occurs

#pf - value of / at which the pitchfork bifurcation occurs

yo initial system energy which may lead to capture

y,, -system energy at which the saddle-node bifurcation occurs

YFU energy associated with F25, at p = p0.

Recall that ppf was determined analytically in the previous chapter. It is restated

here:

A = { [a(ii -1)] 2 _+ [ C3]2} (83)i-i2I. i23

On the other hand, t,, can only be found numerically from the geometric parameters

of the spacecraft.

The second condition which leads to the possibility of capture is related to when

significant nutation growth begins. In this case, it starts when p ; p,. The first
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Figure 18. Conditions Which May Lead to Capture. At i = 0, trajectories termi-

nating above the dotted line have escaped, and those below the dotted
line are captured. These are projected onto the 1&y plane introduced in
Figure 6.
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condition expressed above is the more general analogy of Equation (10) in reference

(6), and the second is the counterpart of Equation (11).

5.2.1 Effects of the Motor Torque e. Given these conditions, we now

illustrate capture and escape using the py plane. As previous authors have done,

we first show how the magnitude of the despin motor torque affects the likelihood of

capture. It has been shown that for prolate spinup, higher-torque motors improve the

chance for escape. The first example shows two gyrostats with identical geometric

configurations, but differt.t--sized motors.

For the original Oblate-Prolate e- ample from the previous chapter, Figure 19

shows a captured and an escaped trajectory. Note that the all-spun initial condition,

identical for both spacecraft, is denoted in the figure by "IC" (t = 0) and that the

spinup maneuver concludes when p = 0, as previously defined. Hence, spinup in the

jsy plane proceeds from right to left. By comparing y! in each spinup trajectory to the

criteria for capture and escape given in Equations (81), we see that the higher motor

torque does indeed prove to be advantageous. Figure 19 also shows how nutation

angle 71 varies over time for both cases. This parameter is defined as the angle

between the rotor spin axis and the angular momentum vector. Mathematically,

17= Cos 1 m- = Cos 1 (ii+~a)

It is clear that the nutation angle of the escaped spacecraft is smaller than that of

the captured one. Also, the maneuver takes less time with the larger torque.

From this _xample, it is clear why Kinsey based the remedy for resonance

capture on increasing the motor torque. Figures 20 and 21 show one of the captured

and escaped trajectories along with their respective nutation angles analyzed in

(13, 14). From the bottom of Figure 20, it is interesting to note that this "captured"

trajectory is actually one that has barely escaped! Again, this becomes apparent

when comparing y¢ to the criteria in Equations (81). This example illustrates the
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difference between Kinsey's and Hall's definitions of resonance capture. According

to Hall, even though Kinsey's captured spacecraft has a cone angle near 900, its

final energy state is actually within the domain of the dual-spin center very close

to the separatrix which segregates it from that of the flat-spin. The fundamental

difference lies in the fact that Kinsey's interpretation is based on the spacecraft's

behavior whereas Hall's is dependent upon quantitative criteria. From a practical

standpoint, Kinsey's definition is more useful to the spacecraft designer although

its drawback is its lack of definitive capture criteria. On the other hand, Hall's is

easier to see mathematically. It is therefore necessary to redefine resonance capture

to encompass both interpretations. To this end, we offer the following terminology:

A dual-spin spacecraft is effectively captured when its final cone angle
prevents the accomplishment of its intended mission; otherwise, it has
escaped.

A dual-spin spacecraft is strictly captured when the criteria for capture
as stated in Equations (81) are satisfied; otherwise, is has escaped.

Clearly, Hall's definition is equivalent to the latter case. The former, on the other

hand, is not an exact restatement of Kinsey's. It is more utilitarian and "open-ended"

in the sense that its satisfaction depends on each specific case. In the remainder of

this study, we continue to abide by Hall's interpretation.

Having illustrated resonance capture in the 14y plane, it becomes necessary to

highlight an important characteristic which distinguishes our spinup model from the

one analyzed in reference (6). Although Hall's study shows that a trajectory of the

perturbed system must cross an instantaneous separatrix of the unperturbed system

for capture of the balanced asymmetric gyrostat, this is not necessarily true for our

particular model. By looking at the lsy plane of a typical Oblate-Prolate gyrostat

(e.g. Figure 19), we see that the trajectories of the flat-spin equilibria (F1 . and F 2.)

form a "pocket" when js < p,,. Spinup trajectories which lie within this region have

not crossed a dashed line in the lsy plane, but they continue to oscillate about one of

the flat-spin equilibria and are therefore captured. Taking this observation one step
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further, it can be shown that a separatrix-crossing will in fact result in escape for

initial conditions at which IL > lpf. In these instances, prolate spinup begins near

either of the flat-spin centers since P. is either unstable or non-existent (see Figures

4, 5). The pitchfork bifurcation marks the transformation of P, from a saddle to a

center, so the trajectory which oscillates initially about either Fl,, or F 2•, must cross

a separatrix to escape.

5.2.2 Effects of Initial Phase. We have seen that one way to avoid capture

during spinup is to use a motor with a large torque. The cost of this alternative is

the greater size and weight associated with a more powerful motor. Due to physical

constraints, this may not be a viable solution. Reference (6) shows that a larger

motor torque is not always necessary because the initial conditions (i.e. the initial

position on the momentum sphere) also affect the likelihood of capture. These

features cannot always be seen on the py plane due to its limited two-dimensional

scope. It is clear from this plane that, for a given motor torque, e, at which capture
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is known to occur, one may choose a different initial pty coordinate to avoid this

problem (see Figure 22). This is not always necessary. We show here that for a

given motor torque e and initial conditions A and y at which capture occurs, escape

may still be possible (see Figure 23). This is achieved not with a larger spinup motor

nor by selecting new 1y initial conditions, but by finding a new starting point having

the same energy, but different initial angular phase on the momentum sphere.

The angular phase, 4, is only defined when e = 0 because it represents the

position of the angular momentum vector on a given closed (constant) energy curve.

Hall (5:§5.6.1) defined this parameter in terms of elliptic functions:

u

4K

where u is the time-like argument of the elliptic functions in the unperturbed so-

lutions and K = K(k) is an elliptic integral of the first kind. The subscript H is

added here only to distinguish Hall's definition of 0 from our own. We show below

that both forms are actually equivalent. Recall from Chapter 3 the impracticality of

obtaining explicit closed-form solutions to the unperturbed system. Although we are

able to show that in theory such a solution can be found, actually doing so is quite

cumbersome. For this reason, all results in this study are obtained from numerical

integration of the equations of motion. The same is true for the determination of

the phase. After we show how 0 is defined for our analysis, we will prove that it is

completely equivalent to OH.

Recall that 1 defines a specific momentum sphere, y denotes a particular con-

stant energy curve of the unperturbed motion, and (z1 , X2, Z3) pinpoint the exact

position of the system angular momentum on this curve. When e = 0, kinetic energy

is conserved so that the system angular momentum vector is constrained to "orbit"

around this path. An example, projected onto the X223 plane, is shown in Figure

24. The period of this orbit, denoted here as t1 , is constant. Suppose we choose
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a point on this curve to be the reference from which to define an initial time to.

By doing so, the position of the angular momentum vector at any arbitrary time t,

where to • t < tf, can be found. We define this position parameter as 0 and its

initial value at to as 4'o. From this discussion, it is clear that 4 must be a function

of t. Specifically, 4 is equal to t normalized with respect to the orbital period, i.e.

S=t!+4'0 (84)
ti

If we let to = 4o =0, then 0 < 0 _ 1.

Now we establish its equivalence to the angular phase defined in (5). In his

study, the (unnormalized) parameter denoting the position of the argular momentum

vector is given by u = At + uo. Note that the period of the elliptic function solution

is 4K. Hence, 4K = Atf. We now rearrange these expressions in terms of t and t1 ,
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respectively:

Ut=

4K
t = A

Since Hall's angular phase parameter is given as OH = u/4K, it is clear that O) H =

t/tf. Hence, both definitions of 4) are identical (0 OHbu). With the advent of this

term, we have effectively reduced the number of variables which define the system

angular momentum from four (xi, Z2 z 3, As) to three (4,) j, y).

We now show how resonance capture can be avoided by varying the phase

of the initial condition, 0(0), for a particular value of A and y. Assume that the

curve in Figure 24 is the set of all possible initial conditions for the system angular

momentum vector where p = 0.7 and y = -1.0576. This trajectory lies within

the domain of F2. and represents the unperturbed state of the system just prior

to spinup. As 0(0) undergoes a complete cycle, it follows the curve in a counter-

clockwise manner starting and ending at the point denoted by o. Now, assume the

motor torque is fixed at e = -0.01 so that the system is slightly perturbed. In this

case, the angular momentum vector is no longer constrained to this curve. Its path

may take it away from F 2, into P.'s domain (escape), or it may continue to oscillate

about F2M, (capture). The path that it follows will depend on the point on the initial

closed curve at which it was situated the moment the spinup torque was applied.

In order to determine the effect of these points on the final outcome of spinup,

the initial conditions defined by 0(0) are allowed to vary along this curve, and the

final value of y during spinup is calculated at each initial condition. The resulting

final energies plotted against their respective initial conditions are shown in Figure

25. Application of Equations (81) allows us to determine which final energy states,

•y, result in a captured spacecraft. Thus, escape occurs if the initial phase lies within

the ranges for which y! > -i 2 . The parts of the constant energy curve corresponding
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to these "safe zones" are shown in Figure 26. This analysis is also useful to show that,

for prolate spinup, a larger motor torque promises greater opportunity for escape.

This is illustrated in Figure 27.

It is important to note that only one point on the constant energy curve cor-

responds to the all-spun initial condition. Thus, if the all-spun spacecraft inevitably

leads to resonance capture, the spinup maneuver may need to be initiated with a

nonzero relative angular velocity between the rotor and platform (wo $ 0).

5.3 Probability of Capture

We can now extend this result into something which Henrard (9) defined as

the probability of capture, denoted in this study as P,. Here we find another ad-

vantage of the energy-based definition of capture: the determination of P. is very

straightforward because more precise, albeit less conservative criteria are given by

Equations (81). Once the data used to create Figure 25 is available, we know from

these criteria at which initial phases the system has been captured. P, is then simply

the sum of the ranges of 0(0) for which the final energy state y! < -i 2. For example,

the initial energy curve in Figure 26 has a probability of capture of P, = 0.9064.

Knowing the probability of capture for a given initial condition would be of par-

ticular interest to the spacecraft designer, whose obvious goal would be to commence

the spinup maneuver at an initial condition that is both feasible for the spacecraft

and that has the least likelihood of resulting in capture. It therefore follows that,

given all relevant parameters, the preceding analysis can be applied to find the most

desirable initial condition. Up until now, the probability of capture has been found

for a single constant energy curve on a particular momentum sphere (a particular

value of p). Our next step is to extend this analysis to all possible constant energy

curves on a given sphere. This corresponds to finding P, at different points along a

particular vertical "slice" of the py plane. Finally, this method is extended over the
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Figure 25. Capture and Escape for Initial Conditions Along the Constant Energy

Curve Defined By p = 0.7,y = -1.0576, and e = -0.01. it = 0.7,i 2 =
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Figure 26. Sections of the Constant Energy Curve Corresponding to Capture and

Escape. p = 0.7,y = -1.0576,il = 0.7,i 2 = 0.3,i 3 = 0.8, al = 0.5,a 3 =

0.866,e = -0.01
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entire plot. In effect, we are determining the probabilities of capture for a "grid" of

initial conditions on the py plane.

5.3.1 Probabilities of Capture Across a Single Momentum Sphere. The

Oblate-Prolate py plane can be divided into three distinct regions depending on

the number of equilibria in each. This is shown in Figures 28 - 31. Region A has

six equilibria and four subregions (1 - 4), Region B has four equilibria and three

subregions (5 - 7), and Region C has two equilibria and no subregions. Recall our

previous discussion of the "domain" of a stable equilibrium point on the momentum

sphere. Each subregion corresponds to one of these domains. Although each domain

appears to overlap in the py plane (tops of Figures 29 and 30), they are actually

distinct when viewed on the surface of the momentum sphere (bottoms of same

figures). Recall that the inability to view the phase angle 4 was one limitation of
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Figure 28. Three Distinct Regions of the jty Plane. i1 = 0.7, i2 = 0.3, i3 = 0.8, al =

0.5, a3 = 0.866

the jy plane; here is another handicap. The determination of P- in each region is

discussed individually.

5.3.1.1 Region C. First we examine the probabilities of capture for

initial conditions in Region C. Pc for a single point in this region has already been

determined above. We now perform the same analysis at the same initial value of #

(= 0.7 in our example) but over the entire range of yo. Recall that each initial energy

is a closed curve on the surface of the sphere surrounding the stable equilibria. As

can be seen from Figures 5 and 31, there are no separate domains in this region.

Hence, yo can take any value between the energies associated with 05 and P.. By

plotting Pc against this range of initial energies, we obtain Figure 32, which has some

interesting properties. This Figure shows four distinct areas of interest, labelled by

the corresponding Roman Numerals. Note that Area II has been divided into two

subareas.
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plane (top) and on a schematic of a typical momentum sphere from this
region (bottom).
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plane (top) and on a schematic of a typical momentum sphere from this
region (bottom).
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Figure 32. Probability of Capture Versus Initial Energy at Lo = 0.7. il = 0.7, i2 =

0.3,i 3 = 0.8, al = 0.5, as = 0.866, e = -0.01

Area I is a region of guaranteed capture. For a gyrostat having motor torque

= -0.01, po = 0.7, and initial energies within the range -1.50 <- yo :_ -1.15, all

initial conditions for spinup lead to capture. On the other hand, Area IV (denoted

in this example by 0.42 < yo <_ 1.22) contains all initial conditions for guaranteed

escape. Here capture will never occur. Unlike the other two, Areas II and III

have diverse probabilities. If spinup is initiated in elher of these locations, capture

may or may occur. In Area II, P, is a rough parabolic function of yo. Somewhere

within, there exists an initial energy for which P. is a local minimum (in this case

at 0o = -0.27).

As an interesting aside, we use this technique to compare the overall proba-

bilities of capture for two identical spacecraft having different motor torques. By

superimposing a plot for which e = -0.001 onto Figure 32, the composite plot of

Figure 33 results. From this picture, we can see that spacecraft which undergo pro-

late spinup (low values of yo) have a better chance to escape if a larger motor is
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used. This has been documented throughout the literature as well as earlier in this

chapter. If, however, oblate spinup is desired (higher values of yo), a smaller motor

torque would best serve this purpose.

5.3.1.2 Region B. Estimation of P, for initial conditions in this region

involves a little more work. Because there are three domains, we need to repeat this

procedure three times. Our goal is to determine the probabilities of capture at

initial conditions that lie within each domain, thereby obtaining for each case a plot

similar to Figure 32. Note that in Region C, no separatrices delimit the domains of

the oblate and prolate equilibrium points; hence, the entire region is a single domain.

In Region B (as well as in A), all of the stable centers are bounded from one another

by the separatrices (see Figures 3, 4, 29, and 30). The range of initial energy curves

in each domain, when viewed on the momentum sphere, blankets the entire domain

from the stable center up to and including the separatrix.
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The probabilities of capture for initial conditions in each domain are shown in

Figures 34 - 36. Note that P, is unity throughout most of the flat-spin domains.

Since these grow during spinup, trajectories which begin in orbit near the flat-spin

centers will continue to circle these equilibria at motor shut-off. Initial conditions

very close to the separatrices, however, may be ensnared by P. whose domain is

born when A = pl,. This explains the sudden drop in P, for initial conditions near

the upper limit of yo. Thus, for the most part, the flat-spin domains are analogous

to Area I as previously described for Region C. On the other hand, the domain of

the oblate center, Op, has the same characteristics of Areas II, III, and IV. This can

be seen by comparing Figure 34 to Figure 32.

5.3.1.3 Region A. Region A has four domains. The same procedure

is followed here as above to determine the probabilities of capture. The plots for

each domain are shown in Figures 37 - 40. Again, we see that the domains of Fi,

and F 2. predominately exhibit Area I behavior, bit this time with Ila as well. Of

greater interest are those of 0 ,, and P, Within the domain of 0
1,, the region of neg-

ative slope characteristic of Area Ila is truncated, leaving only the rapid ascent and

peak of Ilb. The equally dramatic drop and the region of guaranteed escape which

characterize Areas III and IV remain qualitatively unchanged. The spinup behavior

for initial conditions within the domain of P,, heretofore nonexistent in the analyses

of Regions B and C, is even more intriguing. In this domain, the probabilities of

capture are zero throughout. The reason for this interesting phenomenon is quite

simple. As do the flat-spin domains, this one grows with time. Hence, trajectories

which start here are likely to remain in orbit about the prolate center.

5.3.2 Probabilities of Capture Throughout the /y Plane. Now that we have

seen how the overall probabilities of capture vary on the three distinctive momentum

spheres which characterize the Oblate-Prolate gyrostat, the results obtained above

can be transcribed onto a single /iy plane. The probabilities of capture for initial
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Figure 34. Probabilities of Capture in the Domain of O, (e = -0.01 and t = 0.4).
i= 0.7,i2 = 0.3,i 3 = 0.8,a 1 = 0.5, a 3 = 0.866
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Figure 35. Probabilities of Capture in the Domain of Fl. (e = -0.01 and p = 0.4).
il = 0.7, i2 = 0.3,i 3 = 0.8, a, = 0.5, a 3 = 0.866
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Figure 36. Probabilities of Capture in the Domain of F 2. (C = -0.01 and L = 0.4).
iI = 0.7, i 2 = 0.3,is = 0.8, al = 0.5, a3 = 0.866

conditions within any single stable equilibrium domain - as well as any combination

of these domains - can be shown over the entire range of p. The major areas

which depict important trends in P,, similar to those described in Figure 32, are

marked on this plot to locate favorable and unfavorable initial conditions. It must

be emphasized, however, that this is only useful if combinations of equilibria whose

domains do not overlap on the py plane are considered, such as FIM - P", or F2, -

O,. This latter example is shown in Figure 41. It depicts the probabilities of capture

for initial conditions in either of their domains for all values of p. Each major area

has been labeled. These correspond to Areas I - IV, which have been previously

described. For comparison, the py plane of a different Oblate-Prolate dual-spinner

is shown in Figure 42. This gyrostat is more asymmetric and better balanced than

the one analyzed in detail above. Comparison of both plots provides us with a better

idea of how spacecraft geometry affects the overall likelihood of capture.
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Figure 37. Probabilities of Capture in the Domain of 0. (e = -0.01 and p = 0.1).
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Figure 38. Probabilities of Capture in the Domain of P. (c = -0.01 and/• = 0.1).
i1 = 0.7, i 2 = 0.3, i3 = 0.8, a1 = 0.5, a 3 = 0.866
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Figure 40.
Probabilities of Capture in the Domain of F2m (e = -0.01 and 1 = 0.1).
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Diagrams similar to the ones in Figures 41 and 42 are useful tools for space-

craft designers. They can be considered "maps" from which the best initial spinup

condition is chosen to avoid resonance capture. Area I must be avoided and Area IV

is ideal. However, given the constraints of spacecraft geometry and available power,

jockeying the satellite into Area IV prior to spinup may not be feasible. More real-

istically, the designer should strive towards initial conditions as close as possible to

the boundary between Areas Ha and Ilb. These maps provide qualitative estimates

for P,. If used in conjunction with plots similar to Figures 32 - 40, the likelihood of

launching a successful spacecraft is maximized.
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i'. Conclusion and Recommendations

In this "aal chapter we summarize our analytical procedure and results. We

also offer recommendations for possible research to augment our findings.

6.1 Summary and Conclusions

In developing the governing equations for our model, we considered three dif-

ferent body-fixed reference frames in which to express them. We first discussed the

principal frame of the axisymmetric, balanced body, YF. Kinsey derived his equa-

tions in this particular coordinate system, but because they were too complex, he

introduced a further simplification. Kinsey ignored all high order terms of the rotor

imbalance, i.e. terms of 0(0 2 ), thereby limiting their applicability to systems having

small products of inertia. Next, we examined the principal frame of the entire space-

craft, P6 . By deriving our equations in terms of this frame, we found that they were

also too complex. Rather than pursue the analysis using either of these systems, we

chose to derive our governing equations in terms of the pseudo-principal frame, FP.

In doing so, we obtained simple dimensionless expressions. This also permitted us

to determine the system kinetic energy in terms of the angular momentum compo-

nents, leading to the development of the py plane. Despite the limitations of this

two-dimensional plot, the py plane is a convenient means from which spinup can be

observed.

After finding these equations, we integrated them numerically to get a history

of the behavior of the spacecraft during spinup. Our analysis centered on the Oblate-

Prolate gyrostat. By applying Hall's energy-based criteria for resonance capture, we

showed how different initial conditions lead to either capture or escape. We also

found that the "captured" example used by Kinsey is actually one in which the

spacecraft barely escapes. Because of the disparity in the definition of and conditions

for capture established by Kinsey and Hall, we introduced new nomenclature to more
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precisely differentiate between the two concepts. Kinsey defines a form of effective

capture, which is based on the spacecraft's observed behavior. There is no precise set

of conditions which signify its onset; it depends on the impact of the nutation angle

on a given spacecraft's mission. On the other hand, Hall describes strict capture.

His definition gives precise criteria for this to occui These can easily be shown on

the lsy plane. Using this definition, we have shown that a spacecraft with a final

nutation angle close to 900 can still escape.

Having established the criteria for resonance capture, we then showed how

different conditions affect its likelihood. The examples given are those for which

the final desired spin configuration is about the prolate dual-spin equilibrium point,

PU- First, we saw that larger motor torques provide a better chance for escape

than smaller ones. This fact has already been w .i-established. Next, we found that

for a given motor torque, capture and escape also depend on the initial conditions.

For a given p and y, these are constrained to lie on a closed curve on the surface

of the momentum sphere and are denoted by the angular phase 0(0). By varying

this parameter, we determined the probability of capture for initial conditions along

this curve. We then repeated this procedure throughout the domains of each stable

center. In each case, we noted four distinct areas characterized by the behavior of

P, as it varies with the initial energy yo. These areas are easily projected onto the

Aly plane, resulting in a simple map which shows spacecraft designers which initial

conditions have the greatest and least probability of capture.

In addition to the development of this useful tool, two new results which have

not been shown in previous works were found from our analysis. First, we saw

that a separatrix crossing is not necessary for capture to occur in an unbalanced

gyrostat. Instead, we found that this is actually required for escape. Second, we

found that whereas a larger motor torque is favorable for prolate spinup, a smaller

one is preferable for oblate spinup.
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6.2 Recommendations for Further Research

1. The unbalanced dual-spin model studied in this thesis is slightly more

general than the axial gyrostat since the rotor does not coincide with a principal

axis of the spacecraft. Instead, it lies somewhere 'within a principal plane, i.e. a

plane defined by any two of the three principal axes. This, however, is still a specific

case of an even more general geometry - a gyrostat having an arbitrarily-aligned

rotor. It would be interesting as well as useful to study this case because it is an

even more realistic model. No real gyrostat is perfectly balanced or symmetric.

2. As mentioned above, knowing the probability of capture would be useful

to spacecraft designers. The method we use to determine this probability can be

described as "brute force" because we must numerically integrate from one hundred

or more different initial conditions to get a reasonably accurate probability for a

single py coordinate. This is a demanding, resource-intensive procedure. Thus, we

recommend that an adaptation of Henrard's (9) analytical method be developed

for this specific purpose. By using this procedure, one would be able to obtain P.

at any initial point in the psy plane with fewer integrations. This can be extended

throughout the entire plane with far fewer integrations for the same given "grid size"

of initial points as in the present analysis.

3. Another topic of great interest is to develop methods to coax the spacecraft

into a desirable initial spinup condition. The map developed in the previous chapter

provides the designer with useful information, but requires that some means be found

to reorient the deployed spacecraft into one of these favorable initial conditions prior

to spinup. Because of geometric constraints, this cannot always be done at the initial

deployment. Ideally, a way must be found which uses no thrusters. Instead, strategic

pulsing of the spinup motor alone should accomplish this task. Scher and Farrenkopf

(20) were able to determine similar means to escape from the dynamic trap states

which occur either during or after completion of this maneuver.
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4. It would be a great triumph if an exact analytical solution could be found

for the unperturbed equations of motion, if at all possible.

5. An aid to improving the efficiency of this analysis is to translate the pro-

grams written for this study into a compiled language such as FORTRAN or C.

All programs used herein have been written in MATLAB. Although MATLAB is an

extremely powerful analytical tool, its subroutines are uncompiled and therefore run

very slowly. These are listed in Appendix D.
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Appendix A. Converting From y.e to YP

Since our model's inertia matrix can only be properly diagonalized in the form

of an apparent gyrostat, as defined in (11:158), the equations of motion must be

expressed relative to the pseudo-principal frame.

A.1 Direction Cosine Matrix, Q

A. 1. 1 Description. Q "rotates" each parameter from .Y to F'P. Its columns

are the eigenvectors of the inertia-like matrix expressed in Y": P - Iaa.

A.1. 2 Matrix Form. Since the rotor imbalance is in the ei plane, 62 P2.

Therefore, Q has the following form:

Q11 0 Q13[ 0 1 0
-Q13 0 Qi1

A.2 Direction of the Rotor Spin Axis, a

A.2.1 Vector Form.

tll

a -- 0

=Qa

Q11a1 + Q13a3

= 0

99- Q13a]
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A .2.2 Inverse Transformation.

a - T=

Qlf - Q13C3 1
0

Qll1C 3 + Q13Cl

A.3 Angular Velocity, v

A.S3.1 Vector Form.

=
Q1, 1 + Q13w 3

S~W2[Q11W3 - Q1 ]
A.3.2 Inverse Transformation.

W, QTT

WR~Q1V1u - Q13P3

Q11M3 + Q13VI
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A.4 Angular Momentum, m

A.4.1 Vector Form.

ml

=Qh[Q•1h/ + Q13h3

= 'h2

Q11h3 - Q,3hlJ

A.4.2 Inverse Transformation.

h =QTM[Q 11ml - Q1m3M]

Qllm3 + Q13MI

A.5 The Inertia-Like Matriz, J

A.5.1 Description. J is a diagonal matrix whose components are the

eigenvalues of Ie-IaaT. These correspond to the respective eigenvectors of IP-I.aaT

which make up the columns of Q.

A.5.2 Matriz Form.

[J,0 ]
J = 0,/2 0

= Q[I - IaaTiQT

101

,, i ! I II II



IIaG2 0 -Ia~la 3 1
-Q 0 12 0 QT.

-I~ala3  033

A53Inverse Trýansformation.

]r -qT~j + CCi

J,+ I~a2 0 I~ala3

- T 0 J2 0 Q. (85)
I~ala3 0 J3 + I.C1
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Appendix B. Translation of Kinsey's Parameters (13)

Kinsey expressed his parameters in terms of the spacecraft's balanced-body

frame, F-. In Chapter 5, we reexamine his model using the technique developed

in this study. Thus, we must translate Kinsey's dimensionless parameters directly

to those used here. This is done in three steps: first, they are returned to dimen-

sional form by inverting the relationships defined in his thesis. Second, Kinsey's

dimensional parameters are translated to ours and then rotated into the principal

frame, P'. Finally, they are rotated into F"V and then nondimensionalized as de-

scribed in Chapter 2 and Appendix A. Since this last step is explained in detail in

the aforementioned sections, we devote this space only to the first two.

B. 1 Definitions

For the sake of convenience, we summarize below all of Kinsey's relevant pa-

rameters.

B. 1.1 Kinsey 's Dimensional Parameters. Kinsey's dimensional parameters

are defined as follows:

I,', platform moment of inertia about bl

I3 = platform moment of inertia about b3

IjB rotor moment of inertia about
1 =rotor moment of inertia about us

IjB3 rotor dynamic imbalance in the plane of b1b3

11 + IB

N spinup motor torque

W1K platform/rotor angular velocity about b1

w2, -- platform/rotor angular velocity about b2
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"WA - platform angular velocity about b3

wB - rotor angular velocity about ý3 .

The initial values of the angular velocity components are expressed as wlK(0), w2K(0),

etc. The subscript K is added here to distinguish Kinsey's parameters from our own.

B.1.2 Kinsey's Dimensionless Geometric Parameters. The physical inter-

pretations of these parameters are given on page 59. In terms of the dimensional

parameters shown above, they are defined as:

V 13 (86)
I,

r - W (87)
I,

i - 33= (88)
0*11

K wN(0) + (89)

B.1.3 Kinsey's Dimensionless Angular Velocity Components. The angular

velocity components are scaled by the initial value of WA. They are as follows:

Cal- W1= _ (90)
WA(O)

C2- W2 K (91)
WA(0)

WA = WA (92)
WA(O)

WO = WB (93)
WA(0)

B.1.4 Kinsey's Dimensionless Initial Conditions. Kinsey assumes that the

spinup maneuver starts from the all-spun condition. The initial spin axis is nearly
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coincident with b3. His dimensionless initial conditions are

Cal () = [1 - o'(1 + J)] + V/[i - o'(1 + j)]I + 40

2v

W2(0) = 0

OA(0) = 1

CB(0) = 1.

B.2 Step 1: Redimensionalizing Kinsey's Equations

From Equations (86) - (88) it is clear that the inertia parameters are scaled by

/l. Furthermore, the motor torque K as well as the angular velocity components are

scaled by WA(O). Since neither of these scale parameters are explicitly given, they

must be assumed. As a result, infinite sets of dimensional values can be found, but

the elements of each are in the same proportions. Recall from the second chapter that

this is one of the advantages of nondimensionalization; it allows one to analyze the

behavior of not just one, but a whole class of similar models having identical behavior.

Thus, without loss of generality, we assume in this thesis that WA(O) = I, = 1.

The redimensionalized parameters, using Equations (86) - (89) and (90) - (93), are

obtained from

A33 -o'JIl

v11

N = I1(0)

wlK(0) = JK wA(O) (0)

W2,(0) = D2(0)WA(o)

WB,(0) = CB(o)WA(0).
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B.3 Step 2: Parameter Translation and Rotation to Y,

B.3.1 Spacecraft Moment of Inertia Tensor, I. The inertia tensor of Kin-

sey's model expressed in Y' is:

O B]I1, 0 3

00 1 0 (94)

In the principal frame this becomes:

I 0 0]

r= o i0 o

0o 0 I.

Since the b2 axis is common to both coordinate frames, the direction cosine matrix

R which transforms expressions from YP to J' looks like the following:

R1 l 0 R13

R= 0 1 0

[-R13 0 R1 1

The columns of R are the eigenvectors of 1.. They correspond to the respective

eigenvalues of Pb which make up the diagonal elements of IP. We now have the

relationship between Kinsey's inertia parameters and our own. To express it in the

principal frame, the following transformation is used:

r = pJRT.

Furthermore, the moment of inertia of the platform about the relative spin axis,

defined herein as I., is simply

I6=- 3. (95)
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B.3.2 Rotor Inertial Angular Velocity, WR. The rotor inertial angular

velocity vector in the balanced-body frame is written as:

[WIK1

WR W2 xr (96)

WB

B.3.3 Direction of the Rotor's Axis of Symmetry, a. From Figure 1 in

Chapter 2, it is clear that a b3 . Thus, with respect to 7*,

0

a 0 (97)

Premultiplying this by R gives an expression for a in terms of the principal frame,

or:

R13

a= 0

R11

B..34 Relative Velocity Between the Platform and Rotor, W;. Our expres-

sion for w. can also be written in terms of Kinsey's parameters. It is simply

Ws = W• - WB (98)

B.3.5 Angular Momentum Vector, h. Knowing these inertia and velocity

parameters allows us to immediately determine the spacecraft's angular momentum

vector in Yb6. This is given as hb = +wb + I~w,ab. Substitution of Equations (94) -
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(98) into this expression gives:

hb =IW•

33W + I3.WB + JB~w

Its •'F counterpart is obtained from

he = Rhb.

B.3.6 Motor Torque, g.. The motor torque, g., expressed in terms of

Kinsey's parameters is simply

g. = -N.
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Appendix C. The All-Spun Initial Condition

A gyrostat is said to be "all-spun" when there is no relative rotation between

the platform and rotor (wo = 0). Thus, to the inertially-fixed observer, it appears

to rotate as a single body. The relation corresponding to this initial condition is

derived below.

Equation (8) gives an expression for the component of the platform's inertial

angular velocity along its symmetry axis. It is repeated here.

ha = I.aT-w, + J.w.

The all-spun condition is thus

h.. = I.aTwR,

and with the help of Equations (17) and (18), this result can be rewritten in Y' as

follows:

h', = I.a.&,.

Into this expression, Equation (20) is substituted. This produces

h.0 = IaTj1 -- m _h-I.rJ-1,.

Substitution of the respective representations of each matrix followed by algebraic

manipulation reduce this to

h', [1+ 1. -(C ,2 )j \ J + .13 q , 3 / "

J1  J3 +, J3m

Dividing both sides of this equation by m gives

[~~ 3:1f'-
Po _+,j + !!_~ ="I. (C--X+-- a03/

Jk 1  J3) J1 J3
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into which J,1 =J(1 - ii) is substituted. This, in turn, leaves

A[ (+ (I. +i) +a )] - il) + a 3 X3

which we then multiply through by J31/I to get:

Jo [ ,,3(1 + Ck ) + C3 = I(i - il) + Ct3 Z3.

Finally, recall from Chapter 2 that J3 = 3- Iac, so that we are left with

aizi(1 - il) + as:3
Po-a0l3 +I•( - ii) *

This is the all-spun initial condition. Note that /so 6 0.

110



Appendix D. Computer Code

All of the relevant computer programs used in this analysis are listed below.

This set of code is written in MATLAB and is provided as a reference for the inter-

ested reader.

D.1 CAPPROB.M

X PROGRAM: capprob.m

X GENERAL DESCRIPTION: This is a collection of subroutines which
X determine the probabilities of capture for a given value of mu.
% Given the dimensionless spacecraft parameters, a series of
% initial curves of constant energy on the unperturbed momentum
% sphere are generated. Every point along these curves are initial
% conditions for numerical integration of the perturbed equations
% of motion. The final energy associated with each initial
% condition is calculated. From this information, plots of final
% energy, yf, versus initial angular phase, phi, may be drawn for
%. each initial point. The probabilities of capture are also
X computed.

% CAUTION: This program takes about 12 hours to run.

%%%%%%%%%%.%X%%%XXX % XX % %XXXX

% The dimensionless parameters for a particular spacecraft are
% defined in this section. Their definitions are self-evident
% from the variable names. When new parameters are used, they
% are changed directly within this program in this section.

% REMINDER: When changing parameters, make these changes to
% the functions 'notorqeom.m', 'phaseint.m', and 'eom.ml also.

clear

il = 0.7;
i2 = 0.3;
i3 = 0.8;
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alphal - 0.5;
alpha3 = sqrt(1 - alphal-2);
epsilon = -0.01;
mu = 0.1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

X Single points on each initial constant energy curve (xlO, x20,
X x30) as well as their associated energies (yO) are found
X using ONLY ON7. of the following functions: 'initialcond.m' or
% 'initialcondx2notO.m'. The former is used when considering a
% sphere for which mu is less than the value of mu at which the
% pitchfork bifurcation occurs. In this case, the statement
% ''x20 = zeros(size(xlO))'' MUST ALSO BE USED. The latter function
% is used when mu is greater than the value of mu at which the
% pitchfork bifurcation occurs. DO NOT USE the statment
% ''x20 - zeros(size(xlO))'' in this case. Comment out the
% statement(s) that do not apply, as shown below.

% [xlO, x30, yO] = initialcond(il,i2,i3,alphal,alpha3,mu);
% x20 = zeros(size(xlO));
[xlO, x20, x30, yO] = initialcondx2notO(il,i2,i3,alphal,alpha3,mu);

% These initial values are stored for future use.

save xlics xlO /ascii /double;
save x2ics x20 /ascii /double;
save x3ics x30 /ascii /double;
save yOics yO /ascii /double;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine the probability of capture (Pc) for each initial curve
% of constant energy. 'findprob.m' also determines the
% final energy, yf, for a given initial phase angle, phi. This
% information is saved in files called 'yfeps01' and 'phiepsOl'.
% These output files are explained in more detail within the
% subroutine 'findprob.m'.

[Pc] = findprob(xlO,x20,x30,yO,il,i2,i3,alphal,alpha3,mu);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Plot the probability of capture versus the initial energy. Note
% that because of the way the subroutines work, ONLY elements
% 2 - 100 of yO and Pc are relevant.

plot (yO(2:100) ,Pc(2:100))
xlabel('Initial Energy at Mu = 0.1')
ylabel('Probability of Capture')
print -deps yOvsPc

D.2 EOM.M

function xdot - eom(t,x)

% GENERAL DESCRIPTION: This program stores the equations of motion
% used for numerical integration.

il = .7;
i2 = .3;
al = 0.5; % alphal
a3 = sqrt(1 - a1^2); % alpha3
epsilon = -0.01;

% Legend

SX(1) - xl
%. x(2) = x2
% x(3) =x3
% x(4) - mu
% x(5) = y

xdot(1) = x(2)*(i2*x(3) - x(4)*a3);
xdot(2) = -il*x(1)*x(3) + x(4)*(a3*x(1) - al*x(3)*(1 - ii));
xdot(3) = x(2)*(x(1)*(il - i2) + x(4)*al*(1 - il));
xdot(4) = epsilon;
xdot(5) = 2*epsilon*(x(1)*al*(il - 1) - x(3)*a3);
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D.3 FILTERCOMP.M

function [RE,rstart,rend,cstart,cend] = filtercomp(X)

% GENERAL DESCRIPTION: This subroutine picks real and complex
% subvectors out of a single given vector made up of real and
% complex segments.

current = 0;

numreal = 0;
numcomp = 0;

RE - zeros(200,200);

CO = zeros(200,200);

for index = 1:length(X)
if imag(X(index)) =- 0

if current I= 1
current = 1;
numreal = numreal + 1;
rstart(numreal) = index;
if numcomp > 0

cend(numcomp) = index- 1;
end

end
else

if current -= 2
current = 2;

numcomp = numcomp + 1;

cstart(numcomp) a index;

if nuareal > 0
rend(numreal) = index- 1;

end
end

end
end
if current -= 1

rend(numreal) = index;
else

cend(numcomp) = index;

end
if numreal > 0

for index a 1:numreal
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RE(index,rstart(index) :rend(index)) =

... X(rstart (index) :rend(index));
end

else
RE = zeros(200,200);

end
if numcomp > 0

for index = 1:numcomp
CO(index,cstart(index) :cend(index)) = ...

... X(cstart (index) :cend(index));
end

else
CO = zeros(200,200);

end

D.-4 FINDPROB.M

function [Pc] = findprob(xlO,x20,x30,yO,il,i2,i3,ala3,mas)

% GENERAL DESCRIPTION: This subroutine takes each initial energy yO
% determined in 'capprob.m' and generates 101 coordinates for
% points all along this curve. It also determines the angular
% phase, phi of each point and calculates the associated final
% energy state at the conclusion of spinup, yf. Finally, the
% probability of capture for each initial energy curve is
% calculated.

% This section determines phi and yf along each curve defined in yO.
% They are saved on disk as variables 'phiepsOl' and 'yfeps01'
% respectively. The variable 'repeat' denotes the ith curve of
% interest (i.e. the ith element of yO) and the variable 'count'

% denotes the jth point on each curve. Hence, the elements of
% 'phiepsOl' and 'yfepsO1 give values of phi and y for he jth point
% along the ith energy curve in yO. NOTE: THIS SUBROUTINE IS
% WRITTEN IN SUCH A WAY THAT THE FIRST COLUMN IN EACH MATRIX IS
%. USELESS DATA.
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RE(index,rstart(index) :rend(index)) =

... I(rstart (index) :rend(index));

end
else

RE = zeros(200,200);
end
if numcomp > 0

for index = 1:numcomp
CO (index,cstart(index) :cend(index)) =

... X(cstart (index) :cend(index));
end

else
-0 = zeros(200,200);

end

D.4 FINDPROB.M

function [Pc] = findprob(xlO,x20,x30,yO,il,i2,i3,ala3,mas)

% GENERAL DESCRIPTION: This subroutine takes each initial energy yO
% determined in 'capprob.m' and generates 101 coordinates for
% points all along this curve. It also determines the angular
% phase, phi of each point and calculates the associated final
% energy state at the conclusion of spinup, yf. Finally, the
% probability of capture for each initial energy curve is
% calculated.

%%%%%%%%%%%%•%X%•%ZX%%%%XX%%%%%%%

% This section determines phi and yf along each curve defined in yO.
X They are saved on disk as variables 'phiepsOl' and 'yfepsO1'
% respectively. The variable 'repeat' denotes the ith curve of
% interest (i.e. the ith element of yO) and the variable 'count'
7 denotes the jth point on each curve. Hence, the elements of
% 'phiepsOl' and 'yfeps01' give values of phi and y for he jth point
% along the ith energy curve in yO. NOTE: THIS SUBROUTINE IS
7. WRITTEN IN SUCH A WAY THAT THE FIRST COLUMN IN EACH MATRIX IS
%. USELESS DATA.
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clg

for repeat = 2:length(yO)-i

% Repeat this process for each initial condition

xl = xlO(repeat);
x2 = x20(repeat);
x3 = x30(repeat);
yic = yO(repeat);
tO = 0;
icvec = Exl x2 x3 mas yic];
[t,x] = myode45('notorqeom', O,icvec,10 (-10));
xl = x(:,l);
x2 = x(:,2);
x3 = x(:,3);

step = length(t)/200;
count = 0;
for i = 1:step:length(t)

count = count + 1;
(phi(count,repeat) ,yf(count,repeat)] = phaseint...

... (il, i2,i3,al,t (i)/t (length(t)) ,xl (i),x2(i),....

•.. x3(i),mas,yic);

end

% Now add the remaining point if the last value is not tf due
% to remainder in the division of length(t)/200.

if i length(t)
i= length(t);
count = count+1;
[phi (count,repeat),yf (count,repeat)] = phaseint...

... (ii,i2,i3,al,t (i)/t (length(t)) ,xl (i),x2(i),....

.. x3(i),masyic);
end

% The probability of capture associated with each column of 'phieps'
% and 'yfeps' is now calculated. All of these values are saved to
% the hard disk for future reference.
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[Pc(repeat)] - probcap(phi(:,repeat), yf(:,repeat), -i2);

save phiepsOl phi /ascii /double
save yfepsOl yf /ascii /double
save Probcaptureeps01 Pc /ascii /double

end

D.5 IFPR.M

function [lambda, wplat, wrotor]
... ifpr(il,i2,i3,xlx2,x3,mu,alphal,alpha3)

% GENERAL DESCRIPTION: This subroutine determines the inertial
% free precession rate of the spacecraft (lambda). It uses the
% numerically integrated values generated by the program
%. 'integrate.m'. This function also determines the inertial
% angular velocities of the rotor (wrotor) and platform (wplat).
% Finally, it returns the values of Kinsey's dimensionless
% parameters.

% Get the J's, assuming that J3 = 1

J3 = 0.66692494184302;
J1 = 33/1( - il);
J2 = J3/(l - i2);
Is = 33/alpha3-2 * (1/(1 - i3) - 1)

J = [J1 0 0; 0 J2 0; 0 0 J3]

% Get the m's, assuming that m = 1.50087471873876

m = 1.50087471873876;
ml = M * xl;
m2 = m * x2;
m3 = m * x3;
ha = m * mu;
alpha - [alphal 0 alpha3]'
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mvector - [ml m2 m3]';

% Determine the principal moments of inertia and the rotation
% matrix QT

W = J1 + Is * alphal-2;

X = J2;
Y - J3 + Is * alpha3-2;

Z = Is * alphal * alpha3;

QT11 - -1/sqrt(1 + (Y - V - sqrt((W - Y)^2 + 4 * Z-2))-2/(4*Z-2));
QT31 = (Y - W - sqrt((g - Y)-2 + 4 * Z^2))/(2 * Z *...

.• sqrt(1 + (Y - V - sqrt((W - Y)-2 + 4 * Z^2))-2/(4 * Z-2)));
QT13 - 1/sqrt(l + (Y - W + sqrt((W - Y)^2 + 4 *Z2))-2/(4*Z-2));

QT33 - -(Y - W + sqrt((W - Y)-2 + 4 * Z-2))/(2 * Z *•...

.. sqrt(1 + (Y - W + sqrt((V - Y)-2 + 4 * Z-2))'2/(4 * Z-2)));

QT = EQTli 0 QT13; 0 1 0; QT31 0 QT33]

Ii = (W + Y - sqrt((W - Y)-2 + 4 * Z-2))/2;
12 = X;

13 = (W + Y + sqrt((V - Y)-2 + 4 * Z-2))/2;

I = [Ii 0 0; 0 12 0; 0 0 13]

a = QT * alpha % Unit vector a

h = QT * mvector; % Angular momentum in the principal frame

% Angular velocity in the principal frame.

iN = (I - Is*a*a')\(h - [ha'*a(1); zeros(1,length(ha)); ha'*a(3)]);

% Relative angular velocity between the platform and rotor.

vs = (ha' - Is*(a'*vM))/Is;

% Determine the rotation matrix into the body frame.

RT = [a(3) 0 -a(l); 0 1 0; a(1) 0 a(3)1;
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% Determine the inertia parameters in the body frame.

Ib = RT * I * RT';

% Angular velocity vector in the body frame.

wK = RT * wM;

% Determine the inertial free precession rate (Kinsey's method).

lambda = (Is*wK(3,1) + (Ib(3,3)-Is)*(wK(3,1)+vs(1)))/Ib(1,1);

vplat = ha/Is;
wrotor = iplat-us';

% Kinsey's dimensionless parameters.

sigma = (Ib(3,3)-Is)/Ib(1,1)
nu = Ib(1,3)/Ib(1,1)
Jkins = Is/(Ib(3,3)-Is) % This parameter is actually 'J'
K = -(m'2*eps/J3)/wK(3,1)^2*(1/Is + 1/(Ib(3,3)-Is))/nu

D.6 INITIALCOND.M

function [xlO, x30, yO] = initialcond(ili2,i3,al,a3,m)

% GENERAL DESCRIPTION: This subroutine determines initial
% conditions in the mu y plane at a given value of m (mu).
% It is applicable only in cases where mu is greater than the
% value of mu at-which the pitchfork bifurcation occurs.

%, I found these values by running 'modeq.m', then examining the
% roots of R1 and R3 (a very tedious procedure).

xlic = -0.025025933586;
xlfc = 0.006255577732;
x3ic = -0.999686802278;
x3fc = 0.999980433682;
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totaldeltapsi = acos(xlic*xlfc+x3ic*x3fc);

deltapsi =totaldeltapsi/100;

psiO - atan2(x3ic,xlic);
psif -psiO + totaldeltapsi;
psi = psiO;
x2 = 0;

for n-1:101
X1 = cos(psi);
x3 - sin(psi);

y = 2*m*(al*(il-l)*xl - a3*x3) -(il*xl^2+i2*x2-2);

X10 = (XlO;xlJ;
x30 = [x30;x3J;
yO = [yO;y];
psi = psi - deltapsi;

end

D. 7 INITIALCONDXNOTO.M

function (ziG, x20, x30, yO] = initialcondx2not0(ii~i2,i3,alia3,mu);

% GENERAL DESCRIPTION: This subroutine determines initial

% conditions in the mu y plane at a given value of mu which is
% less than that for which the pitchfork bifurcation occurs.

xlic = -0.0375;
xif c = -0.019068969268;

stepxl = (xlfc - xlic)/i00;

x3ic = 0.28867513459481;
x3fc = -0.999818170675;
stepx3 = (x3fc - x3ic)/100;

x2ic = real(sqrt(1 - xlic^2 - x3ic^(2)));
x2fc = real(sqrt(1 - xlfc-2 - x3fc' (2)));

yic = real(2*mu*(al*(il-1)*xlic - a3*x3ic) - (il*xlic^2+i2*x2ic-2));
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yfc - real(2*mu*(al*(il-1)*xlfc - a3*x3fc) - (il*xlfc'2+i2*x2fc'2));

x3 = x3ic;
for xl xlic:stepxl:xlfc

x2 real(sqrt(l - x12 - x3-(2)));
y = real(2*uu*(al*(il-1)*xl - a3*x3) - (il*xl"2+i2*x2'2));

if y < yic I y > yfc
x2 real(-sqrt(l - x1-2 - x3-(2)));
y real(2*mu*(al*(il-l),xl - a3*x3) - (il*xl"2+i2*x2'2));

end

xlO - [xlO;xl];

x20 = [x20;x2];

x30 = [x30;x3];
yo =yO;y];
x3 = x3+stepx3;

end

D.8 INTEGRATE.M

% PROGRAM: integrate.m

% GENERAL DESCRIPTION: This program numerically integrates the
% equations of motion. It must be used in conjunction with
% 'eom.m' and 'ode45.m'. The latter subroutine is a built-in NATLAB
%. function.

XXXXXXXX XXXXXXXXXXX% %

% The dimensionless parameters are defined below.

clear
hold on

tO = 0; %. Initial time for integration
ii = .7;

i2 = .3;

i3 f .8;
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al = .5; % alphal
a3 = sqrt(1 - a1^2); % alpha3
epa = .001; % Motor torque epsilon

% Initial values for the dimensionless angular momentum coordinates
Sxl, x2, and x3.

xl = 0;
x2 = 1;

x3 = 0;

% All-spun initial condition.

mas = (xl*al*(1 - i1) + x3*a3)/((a3-2)/i3 + al12 * (1 - il));
y = 2*mas * (xl*al*(il - 1) - x3*a3) - (il*xlV2 + i2*x2^2);

% Time at which spinup concludes.

tf = ceil((l - mas)/eps);

% Numerically integrate the equations of motion.

xO = [xl x2 x3 mas y];
It,x] = ode45('eom',tO,tf,xO);

%%K%%%%%%%%%%%%%%%%%%%%%%%%%

% The following sections operate independently. ThoAe which are not
% of interest may be commented out.

% Plot the spinup trajectory onto the mu y plane.
% Normally, this subroutine is called afterm 'modeq.m, is run
% so that the integrated trajectory can be superimposed onto
% the mu y plane.

plot(x(: ,4) ,x(: ,5))
break
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%%%%%%%%%% %%%%%%%%%%%%%%%

% Plot the nutation angle versus time.

plot(t,acos(x(:,1)*al+x(: ,3)*a3)*180/3.141592654)
break

%%%%%%xx%%%%%%%%%%%%%%%%%%%%%%%%

% Plot the inertial angular velocity of the rotor versus that of the
% platform. For comparison, the inertial free precession rate
% (applicable only for balanced or nearly balanced gyrostats) is
% determined by the function 'ifpr.m' and then plotted as well.

line = [0:.01:2];

[lambda, uplat, wrotor] = ifpr(il,i2,i3,x(:,1),x(:,2),x(:,3),...
.. x(:,4),al,a3);

plot(vrotor,vplat)
hold on
plot(lambda*ones(size(line)),line,'--r')
plot(line,line)
xlabel('Rotor Inertial Angular Velocity')
ylabel('Platform Inertial Angular Velocity')

D.9 KINSEY.M

% PROGRAM: kinsey.m

%. GENERAL DESCPtPTION: This program uses the method outlined in
% Appendix B to convert Kinsey's dimensionless parameters to our
% own.

%, These are his dimensionless parameters (given).

nu = 0.006;

sigma = 0.667;
J 1.25;
K 1.2;
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WAO *1

vbarl0 ((1-sigma*(1+J))+sqrt((l-sigzna*(1+J))Y(2)+4*nu'-(2)))/...

wbar20 = 0;
ubarBO = 1;
vbarA0 = 1;

% Redimensionalize his parameters.

Il = 1;
IA33 = uigma*J*Il;

IB13 - nu*I1;
IB33 = sigfza*I1;
N=nu*K*vAO (2) *(IA33*IB33) / (A33+1B33);
110 = vbarlO*wAO;
w20 = wba~r20*vAO;
vBO = wbarBO*vAO;

hBl = I1*vlO+IB13*vBO;
hB2 = I1*120;

h93 = IA33*vA0+IB33*vBO4IB13*wlO;

lb [ II 0 IB13; 0 Il 0; IB13 0 IA33+IB33]

hB [hBi; hB2; hB3];

% Determine the rotation matrix Reb from the body frame to the
% principal frume. Then, rotate all of the parameters.

ER,Ip] = eig(Ib'lnobalance');
R = [R(:,2) R(:,1) R(:,3)1;
Reb = R

Ip a [Ip(2,2 ) 0 0; 0 Ip(l,l) 0; 0 0 Ip(3,3)J;
Isp = IA33;

a = (Reb(1,3); 0; Reb(3,3)];

hE = Reb*hB;

% Determine the rotation matrix Qpe to from the principal frame
% to the pseudo-principal frame. Then, rotate each parameter.

Jugly - Ip-Isp*a*a'
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[QJ] = eig(Jugly,'nobalance');
Q = [Q(:,2) Q(:,l) Q(:93)];
Qpe = Q)

3 = [J(2,2) 0 0; 0 j(1,1) o; 0 0 J(3,3)]
Qpe'*J*Qpe

alpha = Qpe*a
J3prime = J(3,3)+Isp*alpha(3)'2;

m = Qpe*hE;

% Nondimensionalize the parameters using our technique.

mmag = sqrt(m(1)2+m(2)-2+m(3)Y2)
il = 1-J(3,3)/J(1,1)
i2 - 1-J(3,3)/J(2,2)
i3 = 1-J(3,3)/J3prime
xl - m(1)/muag
x2 = m(2)/mmag
x3 = m(3)/rmag

epsilon = -(J(3,3)*N)/mfmag^2

D.1O MODEQ.M

% FUNCTION: modeq.m

% GENERAL DESCRIPTION: This program uses the procedure outlined in
% Chapter 4 to plot the mu y plane. Unfortunately, there are some
% things which must be done manually. These are explained in the
% relevant sections below.

clear
clg

% The dimensionless parameters are defined here. These parameters
% denote an Oblate-Prolate spacecraft.
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il - .7;
i2 = .3;
i3 = .8;
al = .5; % alphal
a3 = sqrt(1 - al2); % alpha3

m = (0:0.01:1]; % Range of mu

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Case I: x2 is not equal to 0.

for j = 1:length(m)
xl(j) = m(j)*al*(il - 1)/(il - i2);
x3(j) = m(j)*a3/i2;
x2(j) = sqrt(1 - xl(j)-2 - x3(j)-2);

end

% Any complex elements in x2 are filtered out and subsequently
% ignored.

[RE,rstart,rend, cstart, cend] = filtercomp (x2);

for subvector = 1:length(rstart)
for j = rstart(subvector) :rend(subvector)

y(j) = 2*m(j)*(xl(j)*al*(il - 1) - x3(j)*a3) -...

... (xl(j)-2*il + x2(j)^2*i2);

end

% We know that this trajectory is unstable for the Oblate-
% Prolate gyrostat. Hence, we plot it here as a dotted line.

plot (m(rstart (subvector) :rend(subvector)) ,y, '--r')
axis([O 1 -2 2])

hold on

end
storage = y; % Store this vector for future reference.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Case II: x2 = 0.
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clear y

for j = 1:length(zn)

c4 = iI^2;
c3 = 2*ii*(1 - il)*m(j)*al;
c2 = MC - il)*m(j)*a1Y-2 + (m(j)*a3)^2 -i1^2;

ci = -c3;
cO = -(( - i1)*m(j)*aiY-2;

eqi = [c4 c3 c2 ci cOl;

x2 = 0;
X1 = sort(roots(eqi)));

[RE,rstart~rend,catart,cendJ = filtercoznp(XI);

for subvector = 1:length(ratart)
Ri(j ,rstart(subvector) :rend(subvector))=
...RE(subvector,rutart (subvector) :rend(subvector));

end

for r = 1:4
if R1(j,r) ==0

if MWi = 0
R3(j,r) = 1;

end
else

R3(j~r) = (m(j)*a3*R1(j,r))/(il*R1(j,r) +...

.. 1- il)*m(j)*al);
end

end

for subvector = 1:length~rstart)
for q a rstart(subvector):rend(subvector)

y(j,q) = 2*m(j)*(R1(j,q)*a1*(ii - 1) - R3(j,q)*a3)
..(R1(j,q)-2*ii + x2'2*i2);

end
end

for subvector = i:length(catart)
for q = cstart(subvector):cerid(subvector)
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y(jq) = i;
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% One of the big disadvantages of this program is that the routine
% above will not properly sort the four sets of xl and x3
% coordinates (stored in the matrices R1 and R3, respectively).
% The rows correspond to the four possible xl and x3 coordinates
% which locate the four equilibria at a given mu. The columns
% correspond to different values of mu. Sometimes parts of each
% column are swapped with corresponding parts of the other columns
% (e.g. R1(4:100,2) is swapped with R1(4:400,4)]. This can be
% fixed not by altering either of these matrices, but by altering
% the FINAL ENERGY MATRIX y, (defined at the end). The program
% has a built-in feature that prints this four-column matrix. The
% rows are numbered by a fifth column at the left-hand side.
% Scroll through the columns and see where there are breaks in
% the trends of the figures. Most of the time these breaks are
% obvious. These column sections must then be reassigned to the
% proper columns. Fortunately, this is a very simple process
% (it takes a little practice). The commands facilitating this
% procedure are shown in this section.

w = zeros(length(y(:,1))); % Temporary storage vector for
% swapped column sections.

% Once the reversed column sections are identified, stor. the first
%, one in 'w'. This is denoted by statement 'A'. Then, replace the
% original section of 'y' with the correct one ('B'). Finally, take
% the temporarily stored value in 'w' and insert it into the section
% of 'y' where it belongs ('C'). Usually this only needs to be done
% twice, hence the two sets column changes shown.

w(75:101,2) - y(75:101,2); % Step A
y(75:10i,2) - y(75:101,4); % Step B
y(75:101,4) = w(75:101,2); %. Step C

w(55:101,1) = y(55:101,1); % Step A
y(55:101,1) = y(55:101,3); % Step B
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y( 5 5 :101, 3 ) = w(55:101,1); % Step C

xxxxxxxxxxxxxxxxxxxxxxxxxy%%x%%%%

% Plot the trajectories determined from above. Here is another
% major disadvantage of the program. The type of line to be plotted
% (solid or dashed) must be determined manually. Assuming the user
% knows which trajectories are stable and which are not, the plot
% statements must be altered to plot the appropriate line type.
% There are four trajectories ( n = 1, 2, 3, 4), so the stability
% along each trajectory must be determined.

% Plot the first trajectory

n = 1;

[ZRE,zrstart,zrend,zcstart,zcend] = filtercomp(y(: ,n)');
for subvector = 1:length(zrstart)

z(n, zrstart (subvector) :zrend(subvector))
... ZRE(subvector,zrstart (subvector) :zrend(subvector));

plot(m(zrstart(subvector):zrend(subvector)),...
... z(nzrstart(subvector) :zrend(subvector)))

end

hold on

% Plot the second trajectory

n = 2;

[ZRE,zrstart,zrend,zcstart,zcend] = filtercomp(y(: ,n)');
for subvector = i:leugth(zrstart)

z (n, zrstart (subvector) :zrend(subvector))
... ZRE(subvector,zrstart (subvector) :zrend(subvector));

plot(m(1:35) ,z(n,1:35))
plot(m(35:54),z(n,35:54),'--r')

end

hold on

% Plot the third trajectory

129



n = 3;

[ZRE,zrstartzrend,zcstart,zcend] filtercomp(y(:,n)');
for subvector = 1:length(zrstart)

z(n,zrstart(subvector):zrend(subvector))
... ZRE(subvector,zrstart(subvector):zrend(subvector));

plot(m(zrstart(subvector):zrend(subvector)),...
... z(n,zrstart(subvector):zrend(subvector)))

end

hold on

% Plot the fourth trajectory

n = 4;

[ZREzrstart,zrend,zcstart,zcend] = filtercozp(y(:,n)3);
for subvector = 1:length(zrstart)

z(n,zrsta-t(subvector):zrend(subvector))
... ZLE(subvector,zrstart(subvector):zrend(subvector));

plot(m(zrstart(subvector):zrend(subvector)),...
... z(n,zrstart(subvector):zrend(subvector)))

end

% This section prints out the columns of 'y', renamed here as 'z'.
% The coluums of 'z' (and 'y') correspond to the energy of each
% equilibrium point at a particular value of mu. The rows of 'z'
% are defined at different values of mu. The only difference
% between 'y' and 'z' (which is of no concern to the user, unless
% he wishes to modify the program) is that 'y' has complex elements
% which are filtered out and subsequently ignored (set = 0) in 'z'.

number=1:length(y(:,1));
[number' z'1 % Print out the columns of z (y) to
% facilitate the manual column correction
% described above.
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D.11 MYODE45.M

function [tout, yout] = myode45(ypfun, tO, yO, tol, trace)

% THIS MODIFIED VERSION OF 'ODE45.MJ IS PRINTED HERE WITH THE
% WRITTEN CONSENT OF THE MATHWORKS, INC.

% GENERAL DESCRIPTION: This is a modified version of 'ode45.m.I
Y. This program determines the 3-D (xl, x2, x3) coordinates of, and
% the corresponding time for, each point along a given CLOSED
% curve of constant energy on a momentum sphere. Unlike the
% original program from which it is derived, 'myode45.m' does not
% require the user to include 'tfinal' as part of the input
% arguments. This parameter is actually determined by the
% subroutine itself. 'myode45.m' integrates the equations of
% motion until it determines that the trajectory has returned to
% its origin, thereby closing the curve. THE REMAINDER OF THE
% INTRODUCTORY COMMENTS PERTAIN TO THE ORIGINAL 'ODE45.M' PROGRAM.

%ODE45 Solve differential equations, higher order method.
% ODE45 integrates a system of ordinary differential equations using
% 4th and 5th order Runge-Kutta formulas.
% [T,Y] = ODE45('yprime', TO, Tfinal, YO) integrates the system of
% ordinary differential equations described by the M-file YPRIME.M,
% over the interval TO to Tfinal, with initial conditions YO.
% [T, Y] = ODE45(F, TO, Tfinal, YO, TOL, 1) uses tolerance TOL
% and displays status while the integration proceeds.

% INPUT:
% F - String containing name of user-supplied problem
% description.
% Call: yprime = fun(t,y) where F = 'fun'.
% t - Time (scalar).
% y - Solution column-vector.
% yprime - Returned derivative column-vector;
% yprime(i) = dy(i)/dt.
% to - Initial value of t.
% tfinal- Final value of t.
% yO - Initial value column-vector.
% tol - The desired accuracy. (Default: tol = 1.e-6).
% trace - If nonzero, each step is printed. (Default: trace = 0).
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X OUTPUT:
% T - Returned integration time points (column-vector).

% Y - Returned solution, one solution column-vector per tout-value.
x
% The result can be displayed by: plot(tout, yout).

X See also ODE23, ODEDENO.

% C.B. Noler, 3-25-87, 8-26-91, 9-08-92.
X Copyright (c) 1984-92 by The NathWorks, Inc.

% The Fehlberg coefficients:
alpha = [1/4 3/8 12/13 1 1/2]';
beta = [ [ 1 0 0 0 0 01/4

[ 3 9 0 0 0 0]/32
[ 1932 -7200 7296 0 0 01/2197
[ 8341 -32832 29440 -845 0 0)/4104
[-6080 41040 -28352 9295 -5643 01/20520 1';

gama =[ [902880 0 3953664 3855735 -1371249 277020]/7618050
[ -2090 0 22528 21970 -15048 -273601/752400 1';

pow = 1/5;

if nargin < 5, tol = 1.e-6; end
if nargin < 6, trace = 0; end

%. Initialization

t = tO;
hmx = 0.01;

h = hmax/8;
y = yO(:);

f = zeros(length(y),6);
chunk = 128;

tout = zeros(chunk,1);
yout - zeros(chunk,length(y));

k = 1;
tout(k) - t;

yout(k,:) = y.1;
distance = 100;

theta - 0;

flag = 0;
initiald = 0;
thetamax = 0;
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if trace

cdc, t, h, y
end

% The main loop

while distance >- 4*initiald Itheta <3

% Compute the slopes
temp = feval(ypfum,t,y);
f(:,1) = temp(:);
for j = 1:5

temp = feval(ypfun, t+alpha(j)*h, y~h*f*beta(:,j));

:f(:,j+1) = temp(:);
end

%C Estimate the error and the acceptable error

delta = norm(h*f*gammua(:,2),'inf');
tau = tol*max(norm(y,'inl'),1.O);

%C Update the solution only if the error is acceptable

if delta <= tau
t =t + h;

y y +h*f*gamua(:,1);
k =k+1;

if k > length(tout)
tout = (tout; zeros(chunk,l)J;
yout = [yout; zeros(chunk~length(y))];

end
tout(k) = t
yout(k,:) y.=

distance =sqrt((y(2)-yO(2))Y2+(y(3)-yO(3))Y2);
if flag ==0

initiald = distance;

refangle = atan2(y(3) - yO(3),y(2) - yO(2));
end
nevangle = atan2(y(3) - yO(3),y(2) - O2)
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theta = abs(newangle - refangle);

if theta > thetamax & thetamax < 3
thetamax = theta;

elseif theta < thetamax & thetamax >= 3
theta = theta + 2*3.141592654;

end
flag = 1;

end
if trace

home, t, h, y
end

% Update the step size

if delta -= 0.0
h = min(hmax, 0.8*h*(tau/delta)-pow);

end
end

tout = tout(1:k);
yout = yout(l:k,:);

D.12 NOTORQEOM.M

function xdot = eom(t,x)

% GENERAL DESCRIPTION: This program stores the equations of motion
% used by 'myode45.m' to generate the closed curves of constant
% energy.

il = .7;
i2 = .3;
al = 0.5; % alphal
a3 = sqrt(1 - al'2); V alpha3

epsilon = 0;
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% Legend

%x(i) f= xl
% x(2) = x2
% x(3) = X3
% x(4) = mu

xdot(1) = x(2)*(i2*x(3) - x(4)*a3);

xdot(2) = -il*x(1)*x(3) + x(4)*(a3*x(1) - al*x(3)*(1 - il));

xdot(3) = x(2)*(x(1)*(il - i2) + x(4)*al*(l - ii));
xdot(4) = epsilon;

D.13 PHASEINT.M

function [phi,yf] = phaseint(il,i2,i3,al,phiin,X1,12,X3,X4,XS)

% GENERAL DESCRIPTION: This program is a simplified version of
%. 'integrate.m'. It determines the angular phase phi and the final
%. energy yf of each initial condition along the closed constant
% energy curves.

to - 0;
a3 = sqrt(l - al-2);
eps = -. 01;

%. Initial conditions

xl a XI;
x2 = X2;

x3 = X3;

mas = M4;

y = X5;

tf = -mas/eps;

xO = [xl x2 x3 mas y];
[t,x] = ode45('eom',tO,tfxO);

phi = phiin;
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yf - x(length(x(:,5)),5);

D.14 PROBCAP.M

function [Pc] = probcap(phi, yf, yfcrit)

% GENERAL DESCRIPTION: This function determines the probability
% of capture given the phi and yf data AT EACH INITIAL CONDITION.

% Note that phi is a vector, each element of which corresponds
% to the initial phase that gets the corresponding final value
% in yf. yfcrit is the value of y above which it escapes and
%. below which it is captured.

% This function works similar to filtercomp.m.

Pc = 0;

current = 0; % Flag which denotes whether the computer is
% currently cycling through a negative block (1)
% or a positive block(2)

numpos = 0; % Denotes number of positive blocks
% (escaped segments in yf)

numneg = 0; %. Denotes number of negative blocks

% (captured segments in yf)

for index = 1:Jlength(yf)
if yf(index) - yfcrit < 0

if current -= 1
current = 1;
numneg = numneg + 1;
negstart (numneg) = index;
if nunpos > 0

posend(numpos) = index - 1;
end

end
else

if current -= 2
current = 2;
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numpos = numpos + 1;
posstart(numpos) index;
if numneg > 0

negend(numneg) = index - 1;

end

end

end
end
if current == 1

negend(numneg) = index;

else

po0end(numpos) = index;

end

if numneg > 0
for index - 1:numneg

Pc = Pc + phi(negend(index)) - phi(negstart(index));

end
end

D.15 SPHERE.M

% PROGRAM: sphere.m

% GENERAL DESCRIPTION: This quick-and-dirty momentum sphere-
% generating program requires that 'capprob.m' be run first
% and that the data files 'xlicsmu7,' 'x2icsmu7,' and 'x3icsmu7'
% be created. These three files contain the data for a single
% point on each of a series of constant energy curves on the
% momentum sphere. Each point serves as a ''seed'' from which
%. 'myode45.m' generates the entire curve on which it lies. This
%. program draws the momentum sphere at a given value of mu.

load xlicsmu7
load x2icsmu7
load x3icsmu7

skip = 1

% 'skip' determines the step size between each
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% constant energy curve. 'xlicsmu7,' 'x2icsmu7,'
% and 'x3icsmu7' contain data for 100 of these
Scurves in each domain. Because it is difficult
% to observe the topology of the sphere with
% this many curves, 'skip' is used to pick out
% only a few of these to be plotted.

while skip <= length(xlicsmu7)

xO = (xlicsmu7(skip) x2icsmu7(skip) x3icsmu7(skip) 0.7];

% 'xO' contains the initial conditions to be
% fed to 'myode45.m.' The last element is mu.

[T,X] = myode45('notorqeom', O,xO,10"(-7));
plot3(X(: ,1),X(: ,2),X(: ,3))
axis('square')
hold on
if skip+1O>length(xlicsmu7) f skip length(xlicsmu7)

skip = length(xlicsmu7)
else

skip = skip + 10
end

pause(l)
end
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